AI, Deep Learning Fundamentals and Applications

Dr. Ahmad Aljaafreh,
Professor, Intelligent Systems
Tafila Technical University

OUTLINE

Artificial Intelligence (AI)

A brief introduction
Deep Learning
Introduction, what and why
Applications
Deep learning success
Neural Networks
Perceptron
Neural network models
CNN, RNN, Attention
Transformers

Artificial Intelligence (AI)

A brief introduction

AI IS THE NEW ELECTRICITY.

 ANDREM NG

History

Al Foundation: Al Has a Long History

Artificial Intelligence Timeline

Deep Learning Has Changed Al

Deep Learning

Deep Learning is a new area of Machine Learning research, which has been introduced with the objective of moving Machine Learning closer to one of its original goals

Motivations for Deep Architectures

The main motivations for studying learning
algorithms for deep architectures are the following:

Insufficient depth can hurt

The brain has a deep architecture

Cognitive
processes seem deep

Why Now?

1952 (1958 | Stochastic Gradient |
| :--- |
| Descent |
| Perceptron |
| • Learnable Weights |

Neural Networks date back decades, so why the resurgence?

I. Big Data

- Larger Datasets
- Easier

Collection \&
Storage
IM.BGENET

2. Hardware

- Graphics

Processing Units
(GPUs)

- Massively Parallelizable

3. Software

- Improved Techniques
- New Models
- Toolboxes

Until Now...

Deep Learning = Learning Hierarchical Representations

Hand engineered features are time consuming, brittle and not scalable in practice
Can we learn the underlying features directly from data?

Lines \& Edges

Mid Level Features

Eyes \& Nose \& Ears

High Level Features

Facial Structure

Deep Learning = Learning Hierarchical Representations

Feature visualization of convolutional net trained on ImageNet from [Zeiler \& Fergus 2013]

Deep Learning Vs. Machine Learning

(+) Flexibility to Choose best combination of Features and Classifiers
(+) Can get good results with minimal data

Deep Learning
(+) High Accuracy
(-) Semi black-box solution
(-) Lots of Data

Deep Learning + Machine Learning Combined

Applications of Deep Learning

http://machinelearningmastery.com/inspirational-applications-deep-learning/

Use Gases of NLP

Automatic Colorization of Black and White Images

Colorful Image Colorization, Zhang et. al. 2016 https://arxiv.org/pdf/1603.08511.pdf

Automatically Adding Sounds To Silent Movies

The system is trained using 1000 examples of video with sound of a drum stick striking different surfaces and creating different sounds. A deep learning model associates the video frames with a database of pre-rerecorded sounds in order to select a sound to play that best matches what is happening in the scene.
Demo : https://www.youtube.com/watch?v=0FW99AQmMc8

Visually Indicated Sounds, Owens et. al. 2015, https://arxiv.org/abs/1512.08512

Automatic Machine Translation

Given words, phrase or sentence in one language, automatically translate it into another language. Automatic machine translation has been around for a long time, but deep learning is achieving top results. in two specific areas:

Automatic Translation of Text.
Automatic Translation of Images.

Object Classification and Detection in Photographs

Deep Neural Networks for Object Detection, Szegedy et.al. 2013

Automatic Handwriting Generation

Different styles can be learned and then mimicked

Machine Leaning Master Demo: http Madive Learning Mastery .html Htachnne Learning Mastery

Automatic Text Generation

$>$ This is an interesting task, where a corpus of text is learned and from this model new text is generated, word-by-word or character-by-character. The model is capable of learning how to spell, punctuate, form sentences and even capture the style of the text in the corpus.
$>$ Large recurrent neural networks are used to learn the relationship between items in the sequences of input strings and then generate text.

```
PANDDARTUS:
Alas, I thimk he shall be come apporoacheci aumd the clayr
```



```
Anel who is but a chaim amel mubjectes of hile civath.
I shoulaci mot sluepp-
Seconci Sematox =
They ame away thils misexies, producecl mpory my Boul.
```



```
The earth arnel thomughte af mamy states= =
DUNGE VINNCENTIO=
```



```
Soconci Inmel =
They wownld be ruleci afterx thi|echambex amci
my faily mues begmu onut of the IGct, to be comweyed.
Whose moble sowls I'Il have the theart olf the waxs-
clom=
Come, Six, I willu make did behold yowx wowship-
NIOIR=
I"ユ| cirimk it=
    Autommatic Teset Generation Esammple of Shaloespmeare
    Esammple taken fromn A,nodrej karpathy blog post
```


Automatic Image Caption Generation

"man in black shirt is playing guitar."

"girl in pink dress is jumping in air."

"construction worker in orange safety vest is working on road."

"black and white dog jumps over bar."

"two young girls are playing with lego toy."

"young girl in pink shirt is swinging on swing."

Explain Images with Multimodal Recurrent Neural Networks, Mao et.al, 2014 Sequence to Sequence, Subhashini et.al, 2015

Deep Learning

All purpose machine learning
Using Neural Networks:

- Using large amounts of data
- Learning very complex problems
- Automatically learning features

A new era of machine learning

Neural Networks:

Neural networks have taken over

AI

Explore the AlphaGo Games

- Tasks that are made possible by NNs, aka deep learning
- Tasks that were once assumed to be purely in the human domain of expertise

So what are neural networks??

- What are these boxes?
- Functions that take an input and produce an output
- What's in these functions?

The human perspective

- In a human, those functions are computed by the brain...

Recap : NNets and the brain

- In their basic form, NNets mimic the networked structure in the brain

Recap : The brain

- The Brain is composed of networks of neurons

Recap : Nnets and the brain

- Neural nets are composed of networks of computational models of neurons called perceptrons

Recap: the perceptron

- A threshold unit
- "Fires" if the weighted sum of inputs exceeds a threshold
- Electrical engineers will call this a threshold gate
- A basic unit of Boolean circuits

A better figure

- A threshold unit
- "Fires" if the affine function of inputs is positive
- The bias is the negative of the threshold T in the previous slide

The "soft" perceptron (logistic)

$$
\begin{gathered}
z=\sum_{\mathrm{i}} \mathrm{w}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}+b \\
y=\frac{1}{1+\exp (-z)}
\end{gathered}
$$

- A "squashing" function instead of a threshold at the output
- The sigmoid "activation" replaces the threshold
- Activation: The function that acts on the weighted combination of inputs (and threshold)

Other "activations"

- Does not always have to be a squashing function
- We will hear more about activations later
- We will continue to assume a "threshold" activation in this lecture

The multi-layer perceptron

Deep neural network

- A network of perceptrons
- Perceptrons "feed" other perceptrons
- We give you the "formal" definition of a layer later

Defining "depth"

- What is a "deep" network

Deep Structures

- Layered deep structure
- The input is the "source",
- The output nodes are "sinks"

Input to another layer above (image with 8 channels)
$\hat{}$

Input: Black Layer 1: Red Layer 2: Green Layer 3: Yellow Layer 4: Blue

- "Deep" \square Depth greater than 2
- "Depth" of a layer - the depth of the neurons in the layer w.r.t. input

The multi-layer perceptron

- Inputs are real or Boolean stimuli
- Outputs are real or Boolean values
- Can have multiple outputs for a single input
- What can this network compute?
- What kinds of input/output relationships can it model?

MLPs approximate functions

$((A \& \bar{X} \& Z) \mid(A \& \bar{Y})) \&((X \& Y) \mid \overline{(X \& Z)})$

- MLPs can compose Boolean functions
- MLPs can compose real-valued functions
- What are the limitations?

Today

- Multi-layer Perceptrons as universal Boolean functions
- The need for depth
- MLPs as universal classifiers
- The need for depth
- MLPs as universal approximators

Booleans over the reals

- The network must fire if the input is in the coloured area
- The AND compares the sum of the hidden outputs to 5
- NB: What would the pattern be if it compared it to 4 ?

More complex decision boundaries

- Network to fire if the input is in the yellow area
- "OR" two polygons
- A third layer is required

Complex decision boundaries

- Can compose arbitrarily complex decision boundaries

Complex decision boundaries

- Can compose arbitrarily complex decision boundaries

Complex decision boundaries

- Can compose arbitrarily complex decision boundaries
- With only one hidden layer!
- How?

Exercise: compose this with one hidden layer

- How would you compose the decision boundary to the left with only one hidden layer?

Depth and the universal classifier

- Deeper networks can require far fewer neurons

Deep Neural Networks Scanning for patterns (aka convolutional networks)

The model so far

Or, more generally a vector input

- Can recognize patterns in data
- E.g. digits
- Or any other vector data

A new problem

- Does this signal contain the word "Welcome"?
- Compose an MLP for this problem.
- Assuming all recordings are exactly the same length..

Finding a Welcome

- Trivial solution: Train an MLP for the entire recording

Finding a Welcome

- Problem with trivial solution: Network that finds a "welcome" in the top recording will not find it in the lower one
- Unless trained with both
- Will require a very large network and a large amount of training data to cover every case

Finding a Welcome

- Need a simple network that will fire regardless of the location of "Welcome"
- and not fire when there is none

Flowers

- Is there a flower in any of these images

A problem

- Will an MLP that recognizes the left image as a flower also recognize the one on the right as a flower?

A problem

- Need a network that will "fire" regardless of the precise location of the target object

The need for shift invariance

- In many problems the location of a pattern is not important
- Only the presence of the pattern
- Conventional MLPs are sensitive to the location of the pattern
- Moving it by one component results in an entirely different input that the MLP won't recognize
- Requirement: Network must be shift invariant

Solution: Scan

- Scan for the target word
- The spectral time-frequency components in a "window" are input to a "welcome-detector" MLP

Solution: Scan

- Scan for the target word
- The spectral time-frequency components in a "window" are input to a "welcome-detector" MLP

Solution: Scan

- Scan for the target word
- The spectral time-frequency components in a "window" are input to a "welcome-detector" MLP

Solution: Scan

- Scan for the target word
- The spectral time-frequency components in a "window" are input to a "welcome-detector" MLP

Solution: Scan

- Scan for the target word
- The spectral time-frequency components in a "window" are input to a "welcome-detector" MLP

Solution: Scan

- Scan for the target word
- The spectral time-frequency components in a "window" are input to a "welcome-detector" MLP

Solution: Scan

- "Does welcome occur in this recording?"
- We have classified many "windows" individually
- "Welcome" may have occurred in any of them

Solution: Scan

- "Does welcome occur in this recording?"
- Maximum of all the outputs (Equivalent of Boolean OR)

Solution: Scan

- "Does welcome occur in this recording?"
- Maximum of all the outputs (Equivalent of Boolean OR)
- Or a proper softmax/logistic
- Finding a welcome in adjacent windows makes it more likely that we didn't find noise

Solution: Scan

- "Does welcome occur in this recording?"
- Maximum of all the outputs (Equivalent of Boolean OR)
- Or a proper softmax/logistic
- Adjacent windows can combine their evidence
- Or even an MLP

Its actually just one giant network

- The entire operation can be viewed as one giant network
- With many subnetworks, one per window
- Restriction: All subnets are identical
- The network is shift-invariant!

The 2-d analogue: Does this picture have a flower?

- Scan for the desired object
- "Look" for the target object at each position

Solution: Scan

Flower detector MLP

- Scan for the desired object
- At each location, the entire region is sent through the MLP

Solution: Scan

Flower detector MLP

- Scan for the desired object
- At each location, the entire region is sent through the MLP

Solution: Scan

Flower detector MLP

- Scan for the desired object
- At each location, the entire region is sent through the MLP

Solution: Scan

Flower detector MLP

- Scan for the desired object
- At each location, the entire region is sent through the MLP

Solution: Scan

Flower detector MLP

- Scan for the desired object
- At each location, the entire region is sent through the MLP

Solution: Scan

Flower detector MLP

- Scan for the desired object
- At each location, the entire region is sent through the MLP

Solution: Scan

Flower detector MLP

- Scan for the desired object
- At each location, the entire region is sent through the MLP

Solution: Scan

Flower detector MLP

- Scan for the desired object
- At each location, the entire region is sent through the MLP

Solution: Scan

Flower detector MLP

- Scan for the desired object
- At each location, the entire region is sent through the MLP

Solution: Scan

Flower detector MLP

- Scan for the desired object
- At each location, the entire region is sent through the MLP

Solution: Scan

Flower detector MLP

- Scan for the desired object
- At each location, the entire region is sent through the MLP

Solution: Scan

Flower detector MLP

- Scan for the desired object
- At each location, the entire region is sent through the MLP

Solution: Scan

Flower detector MLP

- Scan for the desired object
- At each location, the entire region is sent through the MLP

Solution: Scan

Flower detector MLP

- Scan for the desired object
- At each location, the entire region is sent through the MLP

Scanning the picture to find a flower

- Determine if any of the locations had a flower
- We get one classification output per scanned location
- Each dot in the right represents the output of the MLP when it classifies one location in the input figure
- The score output by the MLP
- Look at the maximum value
- If the picture has a flower, the location with the flower will result in high output value

Scanning the picture to find a flower

- Determine if any of the locations had a flower
- Each dot in the right represents the output of the MLP when it classifies one location in the input figure
- The score output by the MLP
- Look at the maximum value
- Or pass it through a softmax or even an MLP

Its just a giant network with common subnets

- The entire operation can be viewed as a single giant network
- Composed of many "subnets" (one per window)
- With one key feature: all subnets are identical
- The network is shift invariant.

Scanning: A closer look

- The "input layer" is just the pixels in the image connecting to the hidden layer

Scanning: A closer look

- Scanning: Analyze windows of pixels starting from top left, until the bottom right of the image
- Produce an output for every window analyzed
- Pass collection of outputs through a softmax

Scanning: A closer look

- Scanning: Analyze windows of pixels starting from top left, until the bottom right of the image
- Produce an output for every window analyzed
- Pass collection of outputs through a softmax

Scanning: A closer look

- Scanning: Analyze windows of pixels starting from top left, until the bottom right of the image
- Produce an output for every window analyzed
- Pass collection of outputs through a softmax

Scanning: A closer look

- Scanning: Analyze windows of pixels starting from top left, until the bottom right of the image
- Produce an output for every window analyzed
- Pass collection of outputs through a softmax

Scanning: A closer look

- Consider a single neuron in the first layer
- At each position of the box, the neuron is evaluating a "window" of the picture at that location, as part of the classification for that region

Scanning: A closer look

- Consider a single neuron in the first layer
- At each position of the box, the neuron is evaluating a "window" of the picture at that location, as part of the classification for that region
- Let us compute the output of the first neuron for all the windows in the picture before computing the rest of the neurons
- "Scanning" the image with just the neuron
- We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

- Consider a single neuron in the first layer
- At each position of the box, the neuron is evaluating a "window" of the picture at that location, as part of the classification for that region
- Let us compute the output of the first neuron for all the windows in the picture before computing the rest of the neurons
- "Scanning" the image with just the neuron
- We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

- Consider a single neuron in the first layer
- At each position of the box, the neuron is evaluating a "window" of the picture at that location, as part of the classification for that region
- Let us compute the output of the first neuron for all the windows in the picture before computing the rest of the neurons
- "Scanning" the image with just the neuron
- We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

- Consider a single neuron in the first layer
- At each position of the box, the neuron is evaluating a "window" of the picture at that location, as part of the classification for that region
- Let us compute the output of the first neuron for all the windows in the picture before computing the rest of the neurons
- "Scanning" the image with just the neuron
- We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

- Consider a single neuron in the first layer
- At each position of the box, the neuron is evaluating a "window" of the picture at that location, as part of the classification for that region
- Let us compute the output of the first neuron for all the windows in the picture before computing the rest of the neurons
- "Scanning" the image with just the neuron
- We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

- Consider a single neuron in the first layer
- At each position of the box, the neuron is evaluating a "window" of the picture at that location, as part of the classification for that region
- Let us compute the output of the first neuron for all the windows in the picture before computing the rest of the neurons
- "Scanning" the image with just the neuron
- We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

- Consider a single neuron in the first layer
- At each position of the box, the neuron is evaluating a "window" of the picture at that location, as part of the classification for that region
- Let us compute the output of the first neuron for all the windows in the picture before computing the rest of the neurons
- "Scanning" the image with just the neuron
- We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

- Consider a single neuron in the first layer
- At each position of the box, the neuron is evaluating a "window" of the picture at that location, as part of the classification for that region
- Let us compute the output of the first neuron for all the windows in the picture before computing the rest of the neurons
- "Scanning" the image with just the neuron
- We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

- Consider a single neuron in the first layer
- At each position of the box, the neuron is evaluating a "window" of the picture at that location, as part of the classification for that region
- Let us compute the output of the first neuron for all the windows in the picture before computing the rest of the neurons
- "Scanning" the image with just the neuron
- We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

- Consider a single neuron in the first layer
- At each position of the box, the neuron is evaluating a "window" of the picture at that location, as part of the classification for that region
- Let us compute the output of the first neuron for all the windows in the picture before computing the rest of the neurons
- "Scanning" the image with just the neuron
- We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

- Consider a single neuron in the first layer
- At each position of the box, the neuron is evaluating a "window" of the picture at that location, as part of the classification for that region
- Let us compute the output of the first neuron for all the windows in the picture before computing the rest of the neurons
- "Scanning" the image with just the neuron
- We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

- Consider a single neuron in the first layer
- At each position of the box, the neuron is evaluating a "window" of the picture at that location, as part of the classification for that region
- Let us compute the output of the first neuron for all the windows in the picture before computing the rest of the neurons
- "Scanning" the image with just the neuron
- We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

- Consider a single neuron in the first layer
- At each position of the box, the neuron is evaluating a "window" of the picture at that location, as part of the classification for that region
- Let us compute the output of the first neuron for all the windows in the picture before computing the rest of the neurons
- "Scanning" the image with just the neuron
- We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

- Consider a single neuron in the first layer
- At each position of the box, the neuron is evaluating a "window" of the picture at that location, as part of the classification for that region
- Let us compute the output of the first neuron for all the windows in the picture before computing the rest of the neurons
- "Scanning" the image with just the neuron
- We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

- Let us compute the output of the first neuron for all the windows in the picture before computing the rest of the neurons
- Eventually, we can arrange the outputs from the response at the scanned positions into a rectangle that's proportional in size to the original picture

Scanning: A closer look

- We can repeat the process for each of the first-layer neurons
- "Scan" the input with the neuron
- Arrange the neuron's outputs from the scanned positions according to their positions in the original image

Scanning: A closer look

- To classify a specific "window" in the image, we send the first level activations from the positions corresponding to that position to the next layer

Scanning: A closer look

- We can recurse the logic
- The second level neurons too can "scan" the rectangular outputs of the first-level neurons before computing subsequent layers
- (Un)like the first level, they must jointly scan multiple "maps"
- Each location in the output of the second level neuron considers the corresponding locations from the output maps of all the first-level neurons

Scanning: A closer look

- We can recurse the logic
- The second level neurons too can "scan" the rectangular outputs of the first-level neurons before computing subsequent layers
- (Un)like the first level, they must jointly scan multiple "maps"
- Each location in the output of the second level neuron considers the corresponding locations from the output maps of all the first-level neurons

Scanning: A closer look

- We can recurse the logic
- The second level neurons too can "scan" the rectangular outputs of the first-level neurons before computing subsequent layers
- (Un)like the first level, they must jointly scan multiple "maps"
- Each location in the output of the second level neuron considers the corresponding locations from the output maps of all the first-level neurons

Scanning: A closer look

- We can recurse the logic
- The second level neurons too can "scan" the rectangular outputs of the first-level neurons before computing subsequent layers
- (Un)like the first level, they must jointly scan multiple "maps"
- Each location in the output of the second level neuron considers the corresponding locations from the output maps of all the first-level neurons

Scanning: A closer look

- We can recurse the logic
- The second level neurons too can "scan" the rectangular outputs of the first-level neurons before computing subsequent layers
- (Un)like the first level, they must jointly scan multiple "maps"
- Each location in the output of the second level neuron considers the corresponding locations from the output maps of all the first-level neurons

Scanning: A closer look

- We can recurse the logic
- The second level neurons too can "scan" the rectangular outputs of the first-level neurons before computing subsequent layers
- (Un)like the first level, they must jointly scan multiple "maps"
- Each location in the output of the second level neuron considers the corresponding locations from the output maps of all the first-level neurons

Scanning: A closer look

- We can recurse the logic
- The second level neurons too can "scan" the rectangular outputs of the first-level neurons before computing subsequent layers
- (Un)like the first level, they must jointly scan multiple "maps"
- Each location in the output of the second level neuron considers the corresponding locations from the output maps of all the first-level neurons

Scanning: A closer look

- We can recurse the logic
- The second level neurons too can "scan" the rectangular outputs of the first-level neurons before computing subsequent layers
- (Un)like the first level, they must jointly scan multiple "maps"
- Each location in the output of the second level neuron considers the corresponding locations from the output maps of all the first-level neurons

Scanning: A closer look

- To detect a picture at any location in the original image, the output layer must consider the corresponding outputs of the last hidden layer

Detecting a picture anywhere in the

 image?

- Recursing the logic, we can create a map for the neurons in the next layer as well
- The map is a flower detector for each location of the original image

Detecting a picture anywhere in the

 image?

- To detect a picture at any location in the original image, only need to consider the corresponding location of the output map

Detecting a picture anywhere in the

- To detect a picture at any location in the original image, only need to consider the corresponding location of the output map
- Actual problem? Is there a flower in the image
- Not "detect the location of a flower"

Detecting a picture anywhere in the

 image?

- Is there a flower in the picture?
- The entire output map can be sent into a final "max" to detect a flower in the full picture
- Or a softmax, or a full MLP...

Detecting a picture in the image

- Redrawing the final layer
- "Flatten" the output of the neurons into a single block, since the arrangement is no longer important
- Pass that through a max/softmax/MLP

The behavior of the layers

- The first layer neurons "look" at the entire "window" to extract windowlevel features
- Subsequent layers only perform classification over these window-level features
- The first layer neurons is responsible for evaluating the entire window of pixels
- Subsequent layers only look at a single pixel in their input maps

Distributing the scan

- We can distribute the pattern matching over two layers and still achieve the same block analysis at the second layer
- The first layer evaluates smaller blocks of pixels

Distributing the scan

- We can distribute the pattern matching over two layers and still achieve the same block analysis at the second layer
- The first layer evaluates smaller blocks of pixels

Distributing the scan

- We can distribute the pattern matching over two layers and still achieve the same block analysis at the second layer
- The first layer evaluates smaller blocks of pixels

Distributing the scan

- We can distribute the pattern matching over two layers and still achieve the same block analysis at the second layer
- The first layer evaluates smaller blocks of pixels

Distributing the scan

- We can distribute the pattern matching over two layers and still achieve the same block analysis at the second layer
- The first layer evaluates smaller blocks of pixels

Distributing the scan

- We can distribute the pattern matching over two layers and still achieve the same block analysis at the second layer
- The first layer evaluates smaller blocks of pixels

Distributing the scan

- We can distribute the pattern matching over two layers and still achieve the same block analysis at the second layer
- The first layer evaluates smaller blocks of pixels
- The next layer evaluates blocks of outputs from the first layer

Distributing the scan

- We can distribute the pattern matching over two layers and still achieve the same block analysis at the second layer
- The first layer evaluates smaller blocks of pixels
- The next layer evaluates the windows of outputs from the first layer
- This effectively evaluates the larger window of the original image

Distributing the scan

- We can distribute the pattern matching over two layers and still achieve the same block analysis at the second layer
- The first layer evaluates smaller blocks of pixels
- The next layer evaluates windows of outputs from the first layer
- This effectively evaluates the larger window of the original image

Distributing the scan

- The window has been distributed over two layers
- The higher layer implicitly learns the arrangement of sub patterns that represents the larger pattern (the flower in this case)

Distributing the scan

- If second layer neurons scan the maps output by first-layer neurons, they effectively scan the input with the full-sized window
- Jointly scan all the first-layer maps
- Each output of the second-layer neuron represents the output for one full-sized input window

Distributing the scan

- If second layer neurons (jointly) scan the maps output by first-layer neurons, they effectively scan the input with the full-sized window
- Each output of the second-layer neuron represents the output for one full-sized input window
- To compute the MLP output for a window of input, the output neuron only needs to consider the corresponding outputs of second-layer maps

Distributing the scan

- If second layer neurons (jointly) scan the maps output by first-layer neurons, they effectively scan the input with the full-sized window
- Each output of the second-layer neuron represents the output for one full-sized input window
- To compute the MLP output for a window of input, the output neuron only needs to consider the corresponding outputs of second-layer maps
- The output neuron can compute its outputs for every window in the input from the values of the second layer maps (and send it to a subsequent softmax)

This is still just scanning with a shared parameter network

- With a minor modification...

This is still just scanning with a shared parameter network

Each arrow represents an entire set of weights over the smaller cell

The pattern of weights going out of any cell is identical to that from any other cell.

Colors indicate neurons with shared parameters

Layer 1

- The network that analyzes individual blocks is now itself a shared parameter network..

A different view

Filter applied to kth layer of maps (convolutive component plus bias)

- ..A stacked arrangement of planes
- We can view the joint processing of the various maps as processing the stack using a threedimensional filter

The "cube" view of input maps

- The computation of the convolutional map at any location sums the convolutional outputs at all planes

The "cube" view of input maps

- The computation of the convolutional map at any location sums the convolutional outputs at all planes

The "cube" view of input maps

- The computation of the convolutional map at any location sums the convolutional outputs at all planes

The "cube" view of input maps

- The computation of the convolutional map at any location sums the convolutional outputs at all planes

The "cube" view of input maps

- The computation of the convolutional map at any location sums the convolutional outputs at all planes

The "cube" view of input maps

- The computation of the convolutional map at any location sums the convolutional outputs at all planes

The "cube" view of input maps

- The computation of the convolutional map at any location sums the convolutional outputs at all planes

The "cube" view of input maps

- The computation of the convolutional map at any location sums the convolutional outputs at all planes

The other component Downsampling/Pooling

Input

- Convolution (and activation) layers are followed intermittently by "downsampling with pooling" layers
- Typically (but not always) "max" pooling
- Often, they alternate with convolution, though this is not necessary 85

Max pooling

- Max pooling selects the largest from a pool of elements
- Pooling is performed by "scanning" the input

Recall: Max pooling

- Max pooling selects the largest from a pool of elements
- Pooling is performed by "scanning" the input

Recall: Max pooling

- Max pooling selects the largest from a pool of elements
- Pooling is performed by "scanning" the input

Recall: Max pooling

- Max pooling selects the largest from a pool of elements
- Pooling is performed by "scanning" the input

Recall: Max pooling

- Max pooling selects the largest from a pool of elements
- Pooling is performed by "scanning" the input

Recall: Max pooling

- Max pooling scans with a stride of 1 confer jitter-robustness, but do not constitute downsampling
- Downsampling requires a stride greater than 1

Downsampling requires Stride>1

- The "max pooling" operation with "stride" greater than 1 results in an output smaller than the input
- One output per stride
- The output is "downsampled"

Downsampling requires Stride>1

- The "max pooling" operation with "stride" greater than 1 results in an output smaller than the input
- One output per stride
- The output is "downsampled"

Downsampling requires Stride>1

- The "max pooling" operation with "stride" greater than 1 results in an output smaller than the input
- One output per stride
- The output is "downsampled"

Downsampling requires Stride>1

- The "max pooling" operation with "stride" greater than 1 results in an output smaller than the input
- One output per stride
- The output is "downsampled"

Downsampling requires Stride>1

- The "max pooling" operation with "stride" greater than 1 results in an output smaller than the input
- One output per stride
- The output is "downsampled"

Downsampling requires Stride>1

- The "max pooling" operation with "stride" greater than 1 results in an output smaller than the input
- One output per stride
- The output is "downsampled"

Downsampling requires Stride>1

- The "max pooling" operation with "stride" greater than 1 results in an output smaller than the input
- One output per stride
- The output is "downsampled"

Downsampling requires Stride>1

- The "max pooling" operation with "stride" greater than 1 results in an output smaller than the input
- One output per stride
- The output is "downsampled"

Downsampling requires Stride>1

- The "max pooling" operation with "stride" greater than 1 results in an output smaller than the input
- One output per stride
- The output is "downsampled"

Deep Learning
Recurrent Networks

What did I say?

- Speech Recognition
- Analyze a series of spectral vectors, determine what was said
- Note: Inputs are sequences of vectors. Output is a classification result

What is he talking about?

"Football" or "basketball"?

The Steelers, meanwhile, continue to struggle to make stops on defense. They've allowed, on average, 30 points a game, and have shown no signs of improving anytime soon.

- Text analysis
- E.g. analyze document, identify topic
- Input series of words, output classification output
- E.g. read English, output French
- Input series of words, output series of words

Should I invest..

To invest or not to invest?

- Note: Inputs are sequences of vectors. Output may be scalar or vector
- Should I invest, vs. should I not invest in X?
- Decision must be taken considering how things have fared over time

These are classification and prediction problems

- Consider a sequence of inputs
- Input vectors
- Produce one or more outputs
- This can be done with neural networks
- Obviously

Representational shortcut

- Input at each time is a vector
- Each layer has many neurons
- Output layer too may have many neurons
- But will represent everything by simple boxes
- Each box actually represents an entire layer with many units

Representational shortcut

- Input at each time is a vector
- Each layer has many neurons
- Output layer too may have many neurons
- But will represent everything by simple boxes
- Each box actually represents an entire layer with many units

Representational shortcut

- Input at each time is a vector
- Each layer has many neurons
- Output layer too may have many neurons
- But will represent everything as simple boxes
- Each box actually represents an entire layer with many units

The stock prediction problem...

To invest or not to invest?

- Stock market
- Must consider the series of stock values in the past several days to decide if it is wise to invest today
- Ideally consider all of history

The stock predictor network

- The sliding predictor
- Look at the last few days
- This is just a convolutional neural net applied to series data
- Also called a Time-Delay neural network

The stock predictor network

- The sliding predictor
- Look at the last few days
- This is just a convolutional neural net applied to series data
- Also called a Time-Delay neural network

The stock predictor network

- The sliding predictor
- Look at the last few days
- This is just a convolutional neural net applied to series data
- Also called a Time-Delay neural network

The stock predictor network

- The sliding predictor
- Look at the last few days
- This is just a convolutional neural net applied to series data
- Also called a Time-Delay neural network

The stock predictor network

- The sliding predictor
- Look at the last few days
- This is just a convolutional neural net applied to series data
- Also called a Time-Delay neural network

Finite-response model

- This is a finite response system
- Something that happens today only affects the output of the system for N days into the future
- N is the width of the system

$$
Y_{t}=f\left(X_{t}, X_{t-1}, \ldots, X_{t-N}\right)
$$

The stock predictor

- This is a finite response system
- Something that happens today only affects the output of the system for N days into the future
- N is the width of the system

$$
Y_{t}=f\left(X_{t}, X_{t-1}, \ldots, X_{t-N}\right)
$$

The stock predictor

- This is a finite response system
- Something that happens today only affects the output of the system for N days into the future
- N is the width of the system

$$
Y_{t}=f\left(X_{t}, X_{t-1}, \ldots, X_{t-N}\right)
$$

The stock predictor

- This is a finite response system
- Something that happens today only affects the output of the system for N days into the future
- N is the width of the system

$$
Y_{t}=f\left(X_{t}, X_{t-1}, \ldots, X_{t-N}\right)
$$

The stock predictor

- This is a finite response system
- Something that happens today only affects the output of the system for N days into the future
- N is the width of the system

$$
Y_{t}=f\left(X_{t}, X_{t-1}, \ldots, X_{t-N}\right)
$$

The stock predictor

- This is a finite response system
- Something that happens today only affects the output of the system for N days into the future
- N is the width of the system

$$
Y_{t}=f\left(X_{t}, X_{t-1}, \ldots, X_{t-N}\right)
$$

The stock predictor

- This is a finite response system
- Something that happens today only affects the output of the system for N days into the future
- N is the width of the system

$$
Y_{t}=f\left(X_{t}, X_{t-1}, \ldots, X_{t-N}\right)
$$

Finite-response model

- Something that happens today only affects the output of the system for N days into the future
- Predictions consider N days of history
- To consider more of the past to make predictions, you must increase the "history" considered by the system

Finite-response

- Problem: Increasing the "history" makes the network more complex
- No worries, we have the CPU and memory
- Or do we?

Systems often have long-term dependencies

- Longer-term trends -
- Weekly trends in the market
- Monthly trends in the market
- Annual trends
- Though longer historic tends to affect us less than more recent events..

We want infinite memory

- Required: Infinite response systems
- What happens today can continue to affect the output forever
- Possibly with weaker and weaker influence

$$
Y_{t}=f\left(X_{t}, X_{t-1}, \ldots, X_{t-\infty}\right)
$$

A one-tap NARX network

- A NARX net with recursion from the output

A one-tap NARX network

- A NARX net with recursion from the output

A one-tap NARX network

- A NARX net with recursion from the output

A one-tap NARX network

- A NARX net with recursion from the output

A one-tap NARX network

- A NARX net with recursion from the output

A one-tap NARX network

- A NARX net with recursion from the output

A one-tap NARX network

- A NARX net with recursion from the output

A more complete representation

- A NARX net with recursion from the output
- Showing all computations
- All columns are identical
- An input at $t=0$ affects outputs forever

Same figure redrawn

- A NARX net with recursion from the output
- Showing all computations
- All columns are identical
- An input at $t=0$ affects outputs forever

A more generic NARX network

- The output Y_{t} at time t is computed from the past K outputs Y_{t-1}, \ldots, Y_{t-K} and the current and past L inputs X_{t}, \ldots, X_{t-L}

A "complete" NARX network

- The output Y_{t} at time t is computed from all past outputs and all inputs until time t
- Not really a practical model

The simple state-space model

- The state (green) at any time is determined by the input at that time, and the state at the previous time
- An input at $t=0$ affects outputs forever
- Also known as a recurrent neural net

An alternate model for infinite response systems: the state-space model

$$
\begin{gathered}
h_{t}=f\left(x_{t}, h_{t-1}\right) \\
y_{t}=g\left(h_{t}\right)
\end{gathered}
$$

- h_{t} is the state of the network
- Need to define initial state h_{-1}
- The state an be arbitrarily complex

Single hidden layer RNN

- Recurrent neural network
- All columns are identical
- An input at t=0 affects outputs forever

Multiple recurrent layer RNN

- Recurrent neural network
- All columns are identical
- An input at $t=0$ affects outputs forever

Multiple recurrent layer RNN

- We can also have skips..

A more complex state

- All columns are identical
- An input at $t=0$ affects outputs forever

Or the network may be even more complicated

- Shades of NARX
- All columns are identical
- An input at t=0 affects outputs forever

Generalization with other recurrences

- All columns (including incoming edges) are identical

The simplest structures are most popular

- Recurrent neural network
- All columns are identical
- An input at t=0 affects outputs forever

A Recurrent Neural Network

- Simplified models often drawn
- The loops imply recurrence

The detailed version of the simplified representation

Time

Multiple recurrent layer RNN

Multiple recurrent layer RNN

Equations

- Note superscript in indexing, which indicates layer of network from which inputs are obtained
- Assuming vector function at output, e.g. softmax
- The state node activation, $f_{1}()$ is typically $\tanh ()$
- Every neuron also has a bias input

Equations

$$
\begin{gathered}
h_{\mathrm{i}}^{(1)}(-1)=\text { part of network parameters } \\
h_{\mathrm{i}}^{(2)}(-1)=\text { part of network parameters } \\
h_{\mathrm{i}}^{(1)}(t)=f_{1}\left(\sum_{\mathrm{j}} w_{\mathrm{ji}}^{(1)} X_{\mathrm{j}}(t)+\sum_{\mathrm{j}} w_{\mathrm{ji}}^{(11)} h_{\mathrm{i}}^{(1)}(t-1)+b_{\mathrm{i}}^{(1)}\right) \\
h_{\mathrm{i}}^{(2)}(t)=f_{2}\left(\sum_{\mathrm{j}} w_{\mathrm{ji}}^{(2)} h_{\mathrm{j}}^{(1)}(t)+\sum_{\mathrm{j}} w_{\mathrm{ji}}^{(22)} h_{\mathrm{i}}^{(2)}(t-1)+b_{\mathrm{i}}^{(2)}\right) \\
Y(t)=f_{3}\left(\sum_{\mathrm{j}} w_{\mathrm{j} \mathrm{k}}^{(3)} h_{\mathrm{j}}^{(2)}(t)+b_{\mathrm{k}}^{(3)}, k=1 . . M\right)
\end{gathered}
$$

- Assuming vector function at output, e.g. softmax $f_{3}()$
- The state node activations, $f_{k}()$ are typically $\tanh ()$
- Every neuron also has a bias input

Variants on recurrent nets

Images from Karpathy

- 1: Conventional MLP
- 2: Sequence generation, e.g. image to caption
- 3: Sequence based prediction or classification, e.g. Speech recognition, text classification

Variants

many to many

many to many

Images from Karpathy

- 1: Delayed sequence to sequence, e.g. machine translation
- 2: Sequence to sequence, e.g. stock problem, label prediction
- Etc...

Deep Learning
 Sequence to Sequence models: Attention Models

Sequence-to-sequence modelling

- Problem:
- A sequence $X_{1} \ldots X_{\mathrm{N}}$ goes in
- A different sequence $Y_{1} \ldots Y_{\mathrm{M}}$ comes out
- E.g.
- Speech recognition: Speech goes in, a word sequence comes out
- Alternately output may be phoneme or character sequence
- Machine translation: Word sequence goes in, word sequence comes out
- Dialog: User statement goes in, system response comes out
- Question answering : Question comes in, answer goes out
- In general $N \neq M$
- No synchrony between X and Y.

Sequence to sequence

I ate an apple

- Sequence goes in, sequence comes out
- No notion of "time synchrony" between input and output
- May even not even maintain order of symbols
- E.g. "I ate an apple" \rightarrow "Ich habe einen apfel gegessen"
- Or even seem related to the input
- E.g. "My screen is blank" \rightarrow "Please check if your computer is plugged in."

Recap: Predicting text

- Simple problem: Given a series of symbols (characters or words) $w_{1} w_{2} \ldots w_{n}$, predict the next symbol (character or word) w_{n+1}

Language modelling using RNNs

Four score and seven years ???
ABRAHAMLINCOL??

- Problem: Given a sequence of words (or characters) predict the next one
- The problem of learning the sequential structure of language

Simple recurrence : Text Modelling

- Learn a model that can predict the next symbol given a sequence of symbols
- Characters or words
- After observing inputs $w_{0} \ldots w_{k}$ it predicts w_{k+1}
- In reality, outputs a probability distribution for w_{k+1}

Generating Language: The model

- Input: symbols as one-hot vectors
- Dimensionality of the vector is the size of the "vocabulary"
- Projected down to lower-dimensional "embeddings"
- The hidden units are (one or more layers of) LSTM units
- Output at each time: A probability distribution for the next word in the sequence
- All parameters are trained via backpropagation from a lot of text

Modelling the problem

- Delayed sequence to sequence

Modelling the problem

many to many

First process the input and generate a hidden representation for it

- Delayed sequence to sequence

Modelling the problem

many to many

First process the input and generate a hidden representation for it

Then use it to generate an output

- Delayed sequence to sequence

Modelling the problem

many to many

First process the input and generate a hidden representation for it

Then use it to generate an output

- Problem: Each word that is output depends only on current hidden state, and not on previous outputs

Modelling the problem

many to many

- Delayed sequence to sequence
- Delayed self-referencing sequence-to-sequence

The "simple" translation model

- The input sequence feeds into a recurrent structure
- The input sequence is terminated by an explicit <eos> symbol
- The hidden activation at the <eos> "stores" all information about the sentence

The "simple" translation model

- The input sequence feeds into a recurrent structure
- The input sequence is terminated by an explicit <eos> symbol
- The hidden activation at the <eos> "stores" all information about the sentence
- Subsequently a second RNN uses the hidden activation as initial state, and <sos> as initial symbol, to produce a sequence of outputs
- The output at each time becomes the input at the next time
- Output production continues until an <eos> is produced

The "simple" translation model

- The input sequence feeds into a recurrent structure
- The input sequence is terminated by an explicit <eos> symbol
- The hidden activation at the <eos> "stores" all information about the sentence
- Subsequently a second RNN uses the hidden activation as initial state to produce a sequence of outputs
- The output at each time becomes the input at the next time
- Output production continues until an <eos> is produced

The "simple" translation model

- The input sequence feeds into a recurrent structure
- The input sequence is terminated by an explicit <eos> symbol
- The hidden activation at the <eos> "stores" all information about the sentence
- Subsequently a second RNN uses the hidden activation as initial state to produce a sequence of outputs
- The output at each time becomes the input at the next time
- Output production continues until an <eos> is produced

The "simple" translation model

- The input sequence feeds into a recurrent structure
- The input sequence is terminated by an explicit <eos> symbol
- The hidden activation at the <eos> "stores" all information about the sentence
- Subsequently a second RNN uses the hidden activation as initial state to produce a sequence of outputs
- The output at each time becomes the input at the next time
- Output production continues until an <eos> is produced

The "simple" translation model

- The input sequence feeds into a recurrent structure
- The input sequence is terminated by an explicit <eos> symbol
- The hidden activation at the <eos> "stores" all information about the sentence
- Subsequently a second RNN uses the hidden activation as initial state to produce a sequence of outputs
- The output at each time becomes the input at the next time
- Output production continues until an <eos> is produced

The "simple" translation model

- We will illustrate with a single hidden layer, but the discussion generalizes to more layers

The "simple" translation model

- The recurrent structure that extracts the hidden representation from the input sequence is the encoder
- The recurrent structure that utilizes this representation to produce the output sequence is the decoder

The "simple" translation model

- A more detailed look: The one-hot word representations may be compressed via embeddings
- Embeddings will be learned along with the rest of the net
- In the following slides we will not represent the projection matrices

What the network actually produces

- At each time k the network actually produces a probability distribution over the output vocabulary
- $y_{\mathrm{k}}^{\mathrm{w}}=P\left(O_{\mathrm{k}}=w \mid O_{\mathrm{k}-1}, \ldots, O_{1}, I_{1}, \ldots, I_{\mathrm{N}}\right)$
- The probability given the entire input sequence $I_{1}, \ldots, I_{\mathrm{N}}$ and the partial output sequence $O_{1}, \ldots, O_{\mathrm{k}-1}$ until k
- At each time a word is drawn from the output distribution
- The drawn word is provided as input to the next time

What the network actually produces

- At each time k the network actually produces a probability distribution over the output vocabulary
- $y_{\mathrm{k}}^{\mathrm{w}}=P\left(O_{\mathrm{k}}=w \mid O_{\mathrm{k}-1}, \ldots, O_{1}, I_{1}, \ldots, I_{\mathrm{N}}\right)$
- The probability given the entire input sequence $I_{1}, \ldots, I_{\mathrm{N}}$ and the partial output sequence $O_{1}, \ldots, O_{\mathrm{k}-1}$ until k
- At each time a word is drawn from the output distribution
- The drawn word is provided as input to the next time

What the network actually produces

- At each time k the network actually produces a probability distribution over the output vocabulary
- $y_{\mathrm{k}}^{\mathrm{w}}=P\left(O_{\mathrm{k}}=w \mid O_{\mathrm{k}-1}, \ldots, O_{1}, I_{1}, \ldots, I_{\mathrm{N}}\right)$
- The probability given the entire input sequence $I_{1}, \ldots, I_{\mathrm{N}}$ and the partial output sequence $O_{1}, \ldots, O_{\mathrm{k}-1}$ until k
- At each time a word is drawn from the output distribution
- The drawn word is provided as input to the next time

What the network actually produces

- At each time k the network actually produces a probability distribution over the output vocabulary
- $y_{\mathrm{k}}^{\mathrm{w}}=P\left(O_{\mathrm{k}}=w \mid O_{\mathrm{k}-1}, \ldots, O_{1}, I_{1}, \ldots, I_{\mathrm{N}}\right)$
- The probability given the entire input sequence $I_{1}, \ldots, I_{\mathrm{N}}$ and the partial output sequence $O_{1}, \ldots, O_{\mathrm{k}-1}$ until k
- At each time a word is drawn from the output distribution
- The drawn word is provided as input to the next time

What the network actually produces

- At each time k the network actually produces a probability distribution over the output vocabulary
- $y_{\mathrm{k}}^{\mathrm{w}}=P\left(O_{\mathrm{k}}=w \mid O_{\mathrm{k}-1}, \ldots, O_{1}, I_{1}, \ldots, I_{\mathrm{N}}\right)$
- The probability given the entire input sequence $I_{1}, \ldots, I_{\mathrm{N}}$ and the partial output sequence $O_{1}, \ldots, O_{\mathrm{k}-1}$ until k
- At each time a word is drawn from the output distribution
- The drawn word is provided as input to the next time

What the network actually produces

- At each time k the network actually produces a probability distribution over the output vocabulary
- $y_{\mathrm{k}}^{\mathrm{w}}=P\left(O_{\mathrm{k}}=w \mid O_{\mathrm{k}-1}, \ldots, O_{1}, I_{1}, \ldots, I_{\mathrm{N}}\right)$
- The probability given the entire input sequence $I_{1}, \ldots, I_{\mathrm{N}}$ and the partial output sequence $O_{1}, \ldots, O_{\mathrm{k}-1}$ until k
- At each time a word is drawn from the output distribution
- The drawn word is provided as input to the next time

What the network actually produces

- At each time k the network actually produces a probability distribution over the output vocabulary
- $y_{\mathrm{k}}^{\mathrm{w}}=P\left(O_{\mathrm{k}}=w \mid O_{\mathrm{k}-1}, \ldots, O_{1}, I_{1}, \ldots, I_{\mathrm{N}}\right)$
- The probability given the entire input sequence $I_{1}, \ldots, I_{\mathrm{N}}$ and the partial output sequence $O_{1}, \ldots, O_{\mathrm{k}-1}$ until k
- At each time a word is drawn from the output distribution
- The drawn word is provided as input to the next time

What the network actually produces

- At each time k the network actually produces a probability distribution over the output vocabulary
$-y_{\mathrm{k}}^{\mathrm{w}}=P\left(O_{\mathrm{k}}=w \mid O_{\mathrm{k}-1}, \ldots, O_{1}, I_{1}, \ldots, I_{\mathrm{N}}\right)$
- The probability given the entire input sequence $I_{1}, \ldots, I_{\mathrm{N}}$ and the partial output sequence $O_{1}, \ldots, O_{\mathrm{k}-1}$ until k
- At each time a word is drawn from the output distribution
- The drawn word is provided as input to the next time

What the network actually produces

- At each time k the network actually produces a probability distribution over the output vocabulary
$-y_{\mathrm{k}}^{\mathrm{w}}=P\left(O_{\mathrm{k}}=w \mid O_{\mathrm{k}-1}, \ldots, O_{1}, I_{1}, \ldots, I_{\mathrm{N}}\right)$
- The probability given the entire input sequence $I_{1}, \ldots, I_{\mathrm{N}}$ and the partial output sequence $O_{1}, \ldots, O_{\mathrm{k}-1}$ until k
- At each time a word is drawn from the output distribution
- The drawn word is provided as input to the next time

Generating an output from the net

- At each time the network produces a probability distribution over words, given the entire input and entire output sequence so far
- At each time a word is drawn from the output distribution
- The drawn word is provided as input to the next time
- The process continues until an <eos> is generated

The probability of the output

The probability of the output

- The objective of drawing: Produce the most likely output (that ends in an <eos>)

$$
\begin{aligned}
& \underset{0_{1}, \ldots, 0_{\mathrm{L}}}{\operatorname{argmax}} P\left(O_{1}, \ldots, O_{\mathrm{L}} \mid W_{1}^{\mathrm{in}}, \ldots, W_{\mathrm{N}}^{\mathrm{in}}\right) \\
& \quad=\underset{0_{1}, \ldots, 0_{\mathrm{L}}}{\operatorname{argmax}} y_{1}^{0_{1}} y_{2}^{0_{2}} \ldots y_{\mathrm{L}}^{0_{\mathrm{L}}}
\end{aligned}
$$

Greedy drawing

- So how do we draw words at each time to get the most likely word sequence?
- Greedy answer - select the most probable word at each time

Generating Image Captions

- Not really a seq-to-seq problem, more an image-to-sequence problem
- Initial state is produced by a state-of-art CNN-based image classification system
- Subsequent model is just the decoder end of a seq-to-seq model
- "Show and Tell: A Neural Image Caption Generator", O. Vinyals, A. Toshev, S. Bengio, D. Erhan

Generating Image Captions

- Decoding: Given image
- Process it with CNN to get output of classification layer

Generating Image Captions

- Decoding: Given image
- Process it with CNN to get output of classification layer
- Sequentially generate words by drawing from the conditional output distribution $P\left(W_{\mathrm{t}} \mid W_{0} W_{1} \ldots W_{\mathrm{t}-1}\right.$, Image $)$
- In practice, we can perform the beam search explained earlier

Generating Image Captions

- Decoding: Given image
- Process it with CNN to get output of classification layer
- Sequentially generate words by drawing from the conditional output distribution $P\left(W_{\mathrm{t}} \mid W_{0} W_{1} \ldots W_{\mathrm{t}-1}\right.$, Image $)$
- In practice, we can perform the beam search explained earlier

Generating Image Captions

- Decoding: Given image
- Process it with CNN to get output of classification layer
- Sequentially generate words by drawing from the conditional output distribution $P\left(W_{\mathrm{t}} \mid W_{0} W_{1} \ldots W_{\mathrm{t}-1}\right.$, Image $)$
- In practice, we can perform the beam search explained earlier

Generating Image Captions

- Decoding: Given image
- Process it with CNN to get output of classification layer
- Sequentially generate words by drawing from the conditional output distribution $P\left(W_{\mathrm{t}} \mid W_{0} W_{1} \ldots W_{\mathrm{t}-1}\right.$, Image $)$
- In practice, we can perform the beam search explained earlier

Generating Image Captions

- Decoding: Given image
- Process it with CNN to get output of classification layer
- Sequentially generate words by drawing from the conditional output distribution $P\left(W_{\mathrm{t}} \mid W_{0} W_{1} \ldots W_{\mathrm{t}-1}\right.$, Image $)$
- In practice, we can perform the beam search explained earlier

Generating Image Captions

- Decoding: Given image
- Process it with CNN to get output of classification layer
- Sequentially generate words by drawing from the conditional output distribution $P\left(W_{\mathrm{t}} \mid W_{0} W_{1} \ldots W_{\mathrm{t}-1}\right.$, Image $)$
- In practice, we can perform the beam search explained earlier

Examples from Vinyals et al.

"man in black shirt is playing guitar."

"a young boy is holding a baseball bat."

"construction worker in orange safety vest is working on road."

"a cat is sitting on a couch with a remote control."

"two young girls are playing with lego toy."

"a woman holding a teddy bear in front of a mirror."

"boy is doing backflip on wakeboard."

"a horse is standing in the middle of a road. " 108

Variants

A problem with this framework

- In reality: All hidden values carry information
- Some of which may be diluted by the time we get to the final state of the encoder

A problem with this framework

- In reality: All hidden values carry information
- Some of which may be diluted by the time we get to the final state of the encoder
- Every output is related to the input directly
- Not sufficient to have the encoder hidden state to only the initial state of the decoder
- Misses the direct relation of the outputs to the inputs

Using all input hidden states

- Simple solution: Compute the average of all encoder hidden states
- Input this average to every stage of the decoder
- The initial decoder hidden state is now separate from the encoder
- And may be a learnable parameter

Using all input hidden states

- Problem: The average applies the same weight to every input
- It supplies the same average to every output word
- In practice, different outputs may be related to different inputs
- E.g. "lch" is most related to " \mid ", and "habe" and "gegessen" are both most related to "ate"

Using all input hidden states

- Solution: Use a different weighted average for each output word
- The weighted average provided for the kth output word is:

$$
c_{\mathrm{t}}=\frac{1}{N} \sum_{\mathrm{i}}^{\mathrm{N}} w_{\mathrm{i}}(t) h_{\mathrm{i}}
$$

Using all input hidden states

- Solution: Use a different weighted average for each output word
- The weighted average provided for the kth output word is:

$$
c_{0}=\frac{1}{N} \sum_{\mathrm{i}}^{\mathrm{N}} w_{\mathrm{i}}(0) h_{\mathrm{i}}
$$

Using all input hidden states

- Solution: Use a different weighted average for each output word
- The weighted average provided for the kth output word is:

$$
c_{1}=\frac{1}{N} \sum_{\mathrm{i}}^{\mathrm{N}} w_{\mathrm{i}}(1) h_{\mathrm{i}}
$$

Using all input hidden states

- Solution: Use a different weighted average for each output word
- The weighted average provided for the kth output word is:

$$
c_{2}=\frac{1}{N} \sum_{\mathrm{i}}^{\mathrm{N}} w_{\mathrm{i}}(2) h_{\mathrm{i}}
$$

Using all input hidden states

- Solution: Use a different weighted average for each output word
- The weighted average provided for the kth output word is:

$$
c_{3}=\frac{1}{N} \sum_{\mathrm{i}}^{\mathrm{N}} w_{\mathrm{i}}(3) h_{\mathrm{i}}
$$

Using all input hidden states

- Solution: Use a different weighted average for each output word
- The weighted average provided for the kth output word is:

$$
c_{4}=\frac{1}{N} \sum_{\mathrm{i}}^{\mathrm{N}} w_{\mathrm{i}}(4) h_{\mathrm{i}}
$$

Using all input hidden states

- Solution: Use a different weighted average for each output word
- The weighted average provided for the kth output word is:

$$
c_{5}=\frac{1}{N} \sum_{\mathrm{i}}^{\mathrm{N}} w_{\mathrm{i}}(5) h_{\mathrm{i}}
$$

Using all input hidden states

- This solution will work if the weights $w_{\text {ki }}$ can somehow be made to "focus" on the right input word
- E.g., when predicting the word "apfel", $w_{3}(4)$, the weight for "apple" must be high while the rest must be low
- How do we generate such weights??

Attention Models

- Attention weights: The weights $w_{\mathrm{i}}(t)$ are dynamically computed as functions of decoder state
- Expectation: if the model is well-trained, this will automatically "highlight" the correct input
- But how are these computed?

Attention weights at time

- The weights $w_{\mathrm{i}}(t)$ at time t must be computed from available information at time t
- The primary information is S_{t-1} (the state at time time $t-1$)
- Also, the input at time t, but generally not used for simplicity

$$
w_{\mathrm{i}}(t)=a\left(\boldsymbol{h}_{\mathrm{i}}, \boldsymbol{s}_{\mathrm{t}-1}\right)
$$

Requirement on attention weights

- The weights $w_{\mathrm{i}}(t)$ must be positive and sum to 1.0
- I.e. be a distribution
- Ideally, they must be high for the most relevant inputs for the ith output and low elsewhere

Requirement on attention weights

- The weights $w_{\mathrm{i}}(t)$ must be positive and sum to 1.0
- I.e. be a distribution
- Ideally, they must be high for the most relevant inputs for the ith output and low elsewhere
- Solution: A two step weight computation
- First compute raw weights (which could be +ve or -ve)
- Then softmax them to convert them to a distribution

$$
\begin{gathered}
e_{\mathrm{i}}(t)=g\left(\boldsymbol{h}_{\mathrm{i}}, \boldsymbol{s}_{\mathrm{t}-1}\right) \\
w_{\mathrm{i}}(t)=\frac{\exp \left(e_{\mathrm{i}}(t)\right)}{\sum_{\mathrm{j}} \exp \left(e_{\mathrm{j}}(t)\right)}
\end{gathered}
$$

Using all input hidden states

$$
\begin{aligned}
& e_{\mathrm{i}}(1)=g\left(\boldsymbol{h}_{\mathrm{i}}, \boldsymbol{s}_{0}\right) \\
& w_{\mathrm{i}}(1)=\frac{\exp \left(e_{\mathrm{i}}(1)\right)}{\sum_{\mathrm{j}} \exp \left(e_{\mathrm{j}}(1)\right)}
\end{aligned}
$$

$$
c_{1}=\frac{1}{N} \sum_{\mathrm{i}}^{\mathrm{N}} w_{\mathrm{i}}(1) h_{\mathrm{i}}
$$

Using all input hidden states

Summarizing the computation

- "Raw" weight at any time: A function $g()$ that works on the two hidden states
- Actual weight: softmax over raw weights

Attention models

- Typical options for $g()$...
- Variables in red are to be learned

Converting an input (forward pass)

- Pass the input through the encoder to produce hidden representations \boldsymbol{h}_{i}

Converting an input (forward pass)

- Initialize decoder hidden state

Converting an input (forward pass)

- Compute weights (for every \boldsymbol{h}_{i}) for first output

Converting an input (forward pass)

$$
\begin{aligned}
& g\left(\boldsymbol{h}_{\mathbf{i}}, \boldsymbol{s}_{-1}\right)-\boldsymbol{h}_{\mathrm{i}}^{\mathrm{T}} W_{\mathrm{g}} \boldsymbol{s}_{-1} \\
& e_{i}(0)=g\left(\boldsymbol{h}_{i}, \boldsymbol{s}_{-1}\right) \\
& w_{i}(0)=\frac{\exp \left(e_{i}(0)\right)}{\sum_{j} \exp \left(e_{j}(0)\right)}
\end{aligned}
$$

- Compute weights (for every \boldsymbol{h}_{i}) for first output
- Compute weighted combination of hidden values ${ }^{3}$

Converting an input (forward pass)

- Produce the first output
- Will be distribution over words

Converting an input (forward pass)

- Produce the first output
- Will be distribution over words
- Draw a word from the distribution

- Compute the weights for all instances for time $=1$

- Compute the weighted sum of hidden input values at $\mathrm{t}=1$

- Compute the output at $\mathrm{t}=1$
- Will be a probability distribution over words

- Draw a word from the output distribution at $\mathrm{t}=1$

- Compute the weights for all instances for time $=2$

- Compute the weighted sum of hidden input values at $\mathrm{t}=2$

- Compute the output at $\mathrm{t}=2$
- Will be a probability distribution over words

- Draw a word from the distribution

- Compute the weights for all instances for time $=3$

- Compute the weighted sum of hidden input values at $\mathrm{t}=3$

- Compute the output at $\mathrm{t}=3$
- Will be a probability distribution over words
- Draw a word from the distribution

- Continue the process until an end-of-sequence symbol is produced

Modification: Query key value

- Encoder outputs an explicit "key" and "value" at each input time
- Key is used to evaluate the importance of the input at that time, for a given output
- Decoder outputs an explicit "query" at each output time
- Query is used to evaluate which inputs to pay attention to
- The weight is a function of key and query
- The actual context is a weighted sum of value

TRANSFORMERS

CONTENT

- Introduction to Transformers
- Transformers Background
- The Attention Mechanism
- The Transformer Architecture
- GPT and BERT

INTRODUCTION TO TRANSFORMERS

Original Transformers Paper :

Attention Is All You Need
June 12, 2017

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BLEU			Training Cost (FLOPs)	
	EN-DE	EN-FR		EN-DE	EN-FR
ByteNet [18]	23.75				
Deep-Att + PosUnk [39]		39.2			$1.0 \cdot 10^{20}$
GNMT + RL [38]	24.6	39.92		$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S [9]	25.16	40.46		$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$
MoE [32]	26.03	40.56		$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4			$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [38]	26.30	41.16		$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$
ConvS2S Ensemble [9]	26.36	$\mathbf{4 1 . 2 9}$		$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$
Transformer (base model)	27.3	38.1		$\mathbf{3 . 3} \cdot \mathbf{1 0} \mathbf{1 0}^{\mathbf{1 8}}$	
Transformer (big)	$\mathbf{2 8 . 4}$	$\mathbf{4 1 . 8}$		$2.3 \cdot 10^{19}$	

INTRODUCTION TO TRANSFORMERS

First GPT paper by OpenAl:
Original Transformers Paper :
Attention Is All You Need
Improving Language Understanding
by Generative Pre-Training
June 12, 2017
June 11, 2018

INTRODUCTION TO TRANSFORMERS

Original Transformers Paper :
 Attention Is All You Need

First GPT paper by OpenAl:
Improving Language Understanding
by Generative Pre-Training
June 12, 2017

Table 5: Analysis of various model ablations on different tasks. Avg. score is a unweighted average of all the results. ($m c=$ Mathews correlation, $a c c=$ Accuracy, $p c=$ Pearson correlation)

Method	Avg. Score	CoLA (mc)	SST2 (acc)	MRPC $(\mathrm{F} 1)$	STSB (pc)	QQP $(\mathrm{F} 1)$	MNLI (acc)	QNLI (acc)	RTE (acc)
Transformer w/ aux LM (full)	74.7	45.4	91.3	82.3	82.0	$\mathbf{7 0 . 3}$	$\mathbf{8 1 . 8}$	$\mathbf{8 8 . 1}$	$\mathbf{5 6 . 0}$
Transformer w/o pre-training	59.9	18.9	84.0	79.4	30.9	65.5	75.7	71.2	53.8
Transformer w/o aux LM	$\mathbf{7 5 . 0}$	$\mathbf{4 7 . 9}$	$\mathbf{9 2 . 0}$	$\mathbf{8 4 . 9}$	$\mathbf{8 3 . 2}$	69.8	81.1	86.9	54.4
LSTM w/ aux LM	69.1	30.3	90.5	83.2	71.8	68.1	73.7	81.1	54.6

INTRODUCTION TO TRANSFORMERS

First GPT paper by OpenAI:
Original Transformers Paper :
Attention Is All You Need
June 12, 2017

Improving Language Understanding
by Generative Pre-Training

First BERT paper by Google:
Pre-Training Deep Bidirectional Transformers
for Language Understanding

INTRODUCTION TO TRANSFORMERS

Original Transformers Paper :
Attention Is All You Need
June 12, 2017

First GPT paper by OpenAI:
Improving Language Understanding
by Generative Pre-Training

First BERT paper by Google:
Pre-Training Deep Bidirectional Transformers
for Language Understanding

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard). The number below each task denotes the number of training examples. The "Average" column is slightly different than the official GLUE score, since we exclude the problematic WNLI set. ${ }^{8}$ BERT and OpenAI GPT are singlemodel, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

TRANSFORMERS :

BACKGROUND

TRANSFORMERS : BACKGROUND

- Word Embeddings
- Encoder Decoder Models
- Attention

TRANSFORMERS : BACKGROUND

- Word Embeddings
- Encoder Decoder Models
- Attention

TRANSFORMERS : BACKGROUND

- Word Embeddings

Representing words in the form of vectors that incorporate information such as word meaning and context.

TRANSFORMERS : BACKGROUND

- Word Embeddings

Representing words in the form of vectors that incorporate information such as word meaning and context.

TRANSFORMERS : BACKGROUND

- Word Embeddings

Representing words in the form of vectors that incorporate information such as word meaning and context.

TRANSFORMERS : BACKGROUND

- Word Embeddings
- Encoder Decoder Models
- Attention

TRANSFORMERS : BACKGROUND

- Encoder Decoder Models

Formalizes tasks into two steps -
maps the input into an encoded representation used by the decoder to generate output

TRANSFORMERS : BACKGROUND

- Encoder Decoder Models

Formalizes tasks into two steps -
maps the input into an encoded representation used by the decoder to generate output

TRANSFORMERS : BACKGROUND

- Encoder Decoder Models

Formalizes tasks into two steps -
maps the input into an encoded representation used by the decoder to generate output

TRANSFORMERS : BACKGROUND

- Encoder Decoder Models

Formalizes tasks into two steps -
maps the input into an encoded representation used by the decoder to generate output

TRANSFORMERS : BACKGROUND

- Word Embeddings

- Encoder Decoder Models
- Attention

TRANSFORMERS : BACKGROUND

- Attention Mechanism

A method of dynamically giving weight (attention) to different parts of the input to make a decision.

TRANSFORMERS : BACKGROUND

- Attention Mechanism

A method of dynamically giving weight (attention) to different parts of the input to make a decision.

TRANSFORMERS : BACKGROUND

- Attention Mechanism

A method of dynamically giving weight (attention) to different parts of the input to make a decision.

TRANSFORMERS : BACKGROUND

- Attention Mechanism

A method of dynamically giving weight (attention) to different parts of the input to make a decision.

TRANSFORMERS : BACKGROUND

- Attention Mechanism

A method of dynamically giving weight (attention) to different parts of the input to make a decision.

TRANSFORMERS :

THE ATTENTION MECHANISM

THE ATTENTION MECHANISM

- Attention
- Self-Attention
- Multi-Head Attention

THE ATTENTION MECHANISM

- Attention
- Self-Attention
- Multi-Head Attention

THE ATTENTION MECHANISM

- Attention

THE ATTENTION MECHANISM

- Attention

THE ATTENTION MECHANISM

- Attention

What is the other input to the attention module
at the beginning of generation?

THE ATTENTION MECHANISM

- Attention

At $\mathrm{t}=0$,
First time step of generation

THE ATTENTION MECHANISM

- Attention

At $\mathrm{t}=\mathbf{0}$,
First time step of generation

THE ATTENTION MECHANISM

- Attention : Set Up

THE ATTENTION MECHANISM

- Attention : Set Up

THE ATTENTION MECHANISM

- Calculating Attention

At $\mathbf{t}=\mathbf{0}$,
First time step of generation

THE ATTENTION MECHANISM

- Calculating Attention

STEP -1: CALCULATE A SIMILARITY MEASURE BETWEEN QUERY AND EACH KEY $\mathrm{ei}(\mathrm{t})=\mathrm{g}(\boldsymbol{q}(\mathrm{t}), \boldsymbol{k} \boldsymbol{i})$
 $\underset{\text { QUERY }}{\text { q }}$

KEYS

THE ATTENTION MECHANISM

- Calculating Attention

STEP -1: CALCULATE A SIMILARITY MEASURE BETWEEN QUERY AND EACH KEY $\mathrm{ei}(\mathrm{t})=\mathrm{g}(\boldsymbol{q}(\mathrm{t}), \boldsymbol{k} \boldsymbol{i})$

Examples:
$g\left(\boldsymbol{q}, \boldsymbol{k}_{i}\right)=\boldsymbol{q}^{\top} \boldsymbol{k} i$

THE ATTENTION MECHANISM

- Calculating Attention

STEP-1 : CALCULATE A SIMILARITY MEASURE BETWEEN QUERY AND EACH KEY

$$
\mathrm{ei}(\mathrm{t})=\mathrm{g}(\boldsymbol{q}(\mathrm{t}), \boldsymbol{k} i)
$$

Examples:
$\mathrm{g}\left(\boldsymbol{q}, \boldsymbol{k}_{i}\right)=\boldsymbol{q}^{\top} \boldsymbol{k}_{i}$
$\mathrm{~g}\left(\boldsymbol{q}, \boldsymbol{k}_{i}\right)=\boldsymbol{q}^{\top} \mathbf{W} \boldsymbol{k}_{i}$

THE ATTENTION MECHANISM

- Calculating Attention

STEP -1 : CALCULATE A SIMILARITY MEASURE BETWEEN QUERY AND EACH KEY

$$
\mathrm{ei}(\mathrm{t})=\mathrm{g}(\boldsymbol{q}(\mathrm{t}), \boldsymbol{k} \boldsymbol{i})
$$

STEP -2 : TAKE SOFTMAX OVER RAW WEIGHTS

$$
\mathrm{wi}_{\mathrm{i}}(\mathrm{t})=\frac{\exp \left(\mathrm{ei}_{\mathrm{i}}(\boldsymbol{q}(\mathrm{t}), \boldsymbol{k} \boldsymbol{k})\right)}{\sum_{\mathrm{j}} \exp \left(\mathrm{ej}_{\mathrm{j}}\left(\boldsymbol{q}(\mathrm{t}), \boldsymbol{k}_{j}\right)\right)}
$$

THE ATTENTION MECHANISM

- Calculating Attention

VALUES

STEP -1: CALCULATE A SIMILARITY MEASURE BETWEEN QUERY AND EACH KEY

$$
\mathrm{ei}(\mathrm{t})=\mathrm{g}(\boldsymbol{q}(\mathrm{t}), \boldsymbol{k} \boldsymbol{i})
$$

STEP -2 : TAKE SOFTMAX OVER RAW WEIGHTS

$$
\mathrm{w}_{\mathrm{i}(\mathrm{t})}=\frac{\exp \left(\mathrm{e}_{\mathrm{i}}(\boldsymbol{q}(\mathrm{t}), \boldsymbol{k} \boldsymbol{k})\right)}{\sum_{\mathrm{j}} \exp \left(\mathrm{ej}_{\mathrm{j}}(\boldsymbol{q}(\mathrm{t}), \boldsymbol{k})\right)}
$$

STEP -3 : TAKE A LINEAR COMBINATION

$$
\boldsymbol{O}(\boldsymbol{k}, \boldsymbol{q}(\mathrm{t}), \boldsymbol{v})=\sum_{i} \mathrm{wi}(\mathrm{t}) \boldsymbol{v} i
$$

THE ATTENTION MECHANISM

- Attention

NOTE : Query, Key, Values are generalizations of the input to the attention mechanism.

THE ATTENTION MECHANISM

- Attention
- Self-Attention
- Multi-Head Attention

THE ATTENTION MECHANISM

- Self-Attention

THE ATTENTION MECHANISM

\author{

- Self-Attention
}

THE ATTENTION MECHANISM

\author{

- Self-Attention
}

THE ATTENTION MECHANISM

- Self-Attention

Find the attention of each hidden state with every other hidden state in the sequence

THE ATTENTION MECHANISM

- Self-Attention

Find the attention of each hidden state with every other hidden state in the sequence

KEYS

THE ATTENTION MECHANISM

- Self-Attention

Find the attention of each hidden state with every other hidden state in the sequence

THE ATTENTION MECHANISM

- Self-Attention

Find the attention of each hidden state with every other hidden state in the sequence

	QUERY
VALUES	\boldsymbol{h}_{1}

v_{1}	v_{2}	v_{3}
$\mathrm{~h}_{1}$	$\mathrm{~h}_{2}$	$\mathrm{~h}_{3}$
k_{1}	k_{2}	k_{3}
	KEYS	

q_{1}

$$
\mathrm{w}_{\mathrm{i}(\mathrm{t})}=\frac{\exp \left(\mathrm{e}_{\mathrm{i}}\left(\boldsymbol{q}_{(\mathrm{t})}, \boldsymbol{k}_{\mathrm{i}}\right)\right)}{\sum_{\mathrm{j}} \exp \left(\mathrm{e}_{\mathrm{j}}\left(\boldsymbol{q}_{(\mathrm{t})}, \boldsymbol{k}_{j}\right)\right)}
$$

THE ATTENTION MECHANISM

- Self-Attention

Find the attention of each hidden state with every other hidden state in the

$$
\boldsymbol{O}_{1}\left(\boldsymbol{k}_{i}, \boldsymbol{q}_{1}\right)=\sum w_{i} \boldsymbol{v}_{i}
$$

$$
\mathrm{w}_{\mathrm{i}(\mathrm{t})}=\frac{\exp \left(\mathrm{e}_{\mathrm{i}}\left(\boldsymbol{q}_{(\mathrm{t})}, \boldsymbol{k}_{i}\right)\right)}{\sum_{j} \exp \left(\mathrm{e}_{\mathrm{j}}\left(\boldsymbol{q}_{(\mathrm{t})}, \boldsymbol{k}_{j}\right)\right)}
$$

THE ATTENTION MECHANISM

- Self-Attention

Find the attention of each hidden state with every other hidden state in the sequence

$$
\boldsymbol{O}_{2}\left(\boldsymbol{k}_{\mathbf{i}}, \boldsymbol{q}_{2}\right)=\sum \mathrm{w}_{\mathrm{i}} \boldsymbol{v}_{\mathbf{i}}
$$

$$
\mathrm{w}_{\mathrm{i}(\mathrm{t})}=\frac{\exp \left(\mathrm{e}_{\mathrm{i}}\left(\boldsymbol{q}_{(\mathrm{t})}, \boldsymbol{k}_{\mathrm{i}}\right)\right)}{\sum_{\mathrm{j}} \exp \left(\mathrm{e}_{\mathrm{j}}\left(\boldsymbol{q}_{(\mathrm{t})}, \boldsymbol{k}_{j}\right)\right)}
$$

THE ATTENTION MECHANISM

- Self-Attention

Find the attention of each hidden state with every other hidden state in the sequence

$$
\boldsymbol{O}_{3}\left(\boldsymbol{k}_{\mathbf{i}}, \boldsymbol{q}_{3}\right)=\sum \mathrm{w}_{\mathrm{i}} \boldsymbol{v}_{\mathbf{i}}
$$

$$
\mathrm{w}_{\mathrm{i}(\mathrm{t})}=\frac{\exp \left(\mathrm{e}_{\mathrm{i}}\left(\boldsymbol{q}_{(\mathrm{t})}, \boldsymbol{k}_{\mathrm{i}}\right)\right)}{\sum_{\mathrm{j}} \exp \left(\mathrm{e}_{\mathrm{j}}\left(\boldsymbol{q}_{(\mathrm{t})}, \boldsymbol{k}_{j}\right)\right)}
$$

THE ATTENTION MECHANISM

- Self-Attention

Find the attention of each hidden state with every other hidden state in the

THE ATTENTION MECHANISM

- Self-Attention

Find the attention of each hidden state with every other hidden state in the

Note: Our attention mechanism has no learnable parameter if we use dot product attention

THE ATTENTION MECHANISM

- Self-Attention

THE ATTENTION MECHANISM

- Self-Attention

Do we really need the LSTM to model sequences?

THE ATTENTION MECHANISM

- Self-Attention

THE ATTENTION MECHANISM

- Attention
- Self-Attention
- Multi-Head Attention

THE ATTENTION MECHANISM

NOTE : Query, Key, Values are generalizations of the input to the attention mechanism.

THE ATTENTION . MECHANISM

NOTE : Query, Key, Values are generalizations of the input to the attention mechanism.

$$
k_{1}=W_{k} h_{1} \quad k_{2}=W_{k} h_{2} \quad k_{3}=W_{k} h_{3}
$$

KEYS

$$
\mathrm{W}_{\mathrm{k}}=: \text { To convert input sequence to keys }
$$

THE ATTENTION . MECHANISM

NOTE : Query, Key, Values are generalizations of the input to the attention mechanism.

THE ATTENTION . MECHANISM

NOTE : Query, Key, Values are generalizations of the input to the attention mechanism.

THE ATTENTION MECHANISM

THE ATTENTION MECHANISM

THE ATTENTION MECHANISM

THE ATTENTION - MECHANISM

MULTIPLE ATTENTION HEADS

THE ATTENTION . MECHANISM

THE TRANSFORMER ARCHITECTURE

THE TRANSFORMER ARCHITECTURE

THE TRANSFORMER ARCHITECTURE

THE TRANSFORMER ARCHITECTURE

t_{1}
t_{1}

THE TRANSFORMER ARCHITECTURE

Multiple stacked encoder and decoder blocks!

THE TRANSFORMER ARCHITECTURE

Multiple stacked encoder and decoder blocks!
Layer Normalization!

THE TRANSFORMER ARCHITECTURE

Multiple stacked encoder and decoder blocks!
Layer Normalization!
Positional Embeddings!

GPT ARCHITECTURE

GPT ARCHITECTURE

BERT ARCHITECTURE

BERT ARCHITECTURE

