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Deep Learning is

A Revolution in Artificial 

Intelligence
front-page article at the New York Times

14

http://www.nytimes.com/2012/11/24/science/scientists-see-advances-in-deep-learning-a-part-of-artificial-intelligence.html?_r=0
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Introduction 

Deep Learning is a new area of 
Machine Learning research, 
which has been introduced 

with the objective of moving 
Machine Learning closer to 

one of its original goals

Deep Learning is about 
learning multiple levels of 

representation and abstraction 
that help to make sense of 

data such as images, sound, 
and text.

Deep Learning



Motivations 
for Deep 
Architectures

The main 
motivations for 

studying learning 
algorithms for 

deep architectures 
are the following:

Insufficient depth 
can hurt

The brain has a 
deep architecture

Cognitive 
processes seem 

deep



Why Now ?



Until Now…



Deep Learning = Learning Hierarchical Representations
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Applications of Deep Learning

http://machinelearningmastery.com/inspirational-applications-deep-learning/

http://machinelearningmastery.com/inspirational-applications-deep-learning/




Automatic Colorization of Black 
and White Images

Colorful Image Colorization, Zhang et. al. 2016  https://arxiv.org/pdf/1603.08511.pdf



Automatically Adding Sounds To 
Silent Movies

The system is trained using 1000 examples of video with sound of a
drum stick striking different surfaces and creating different sounds.
A deep learning model associates the video frames with a database
of pre-rerecorded sounds in order to select a sound to play that
best matches what is happening in the scene.

Demo : https://www.youtube.com/watch?v=0FW99AQmMc8

Visually Indicated Sounds, Owens et. al. 2015, https://arxiv.org/abs/1512.08512 

https://www.youtube.com/watch?v=0FW99AQmMc8


Automatic Machine Translation

Given words, phrase or sentence in one language, automatically
translate it into another language. Automatic machine translation has
been around for a long time, but deep learning is achieving top results.
in two specific areas:

Automatic Translation of Text.
Automatic Translation of Images.

Deep Learning Network in Machine Translation, Zhang et.al. 2015, 



Object Classification and Detection 
in Photographs

Deep Neural Networks for Object Detection, Szegedy et.al. 2013 





Automatic Handwriting Generation

Different styles can be learned and then mimicked

Demo : http://www.cs.toronto.edu/~graves/handwriting.html

Generative sequences with recurring neural network, Graves 2014 
https://arxiv.org/pdf/1308.0850v5.pdf

http://www.cs.toronto.edu/~graves/handwriting.html


Automatic Text Generation

➢This is an interesting task, where a corpus of text is learned and from this
model new text is generated, word-by-word or character-by-character. The
model is capable of learning how to spell, punctuate, form sentences and even
capture the style of the text in the corpus.
➢Large recurrent neural networks are used to learn the relationship between
items in the sequences of input strings and then generate text.

Generating Sequences With Recurrent NN, Graves, 2014 https://arxiv.org/pdf/1308.0850v5.pdf



Automatic Image Caption 
Generation

Explain Images with Multimodal Recurrent Neural Networks, Mao et.al, 2014
Sequence to Sequence, Subhashini et.al, 2015





Neural Networks:

3
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Neural networks have taken  over
AI

• Tasks that are made possible by NNs, aka deep learning

– Tasks that were once assumed to be purely in the human domain of  
expertise

3
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So what are neural networks??

• What are these boxes?

– Functions that take an input and produce an output

– What’s in these functions?

N.Net
Voice  
signal Transcription N.Net Text caption

Next move

Image

N.Net
Game  
State

3
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The human perspective

• In a human, those functions are computed by  
the brain…

N.Net
Voice  
signal Transcription N.NetImage Text caption

N.Net
Game  
State Next move

3
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Recap : NNets and the brain

• In their basic form, NNets mimic the  
networked structure in the brain

4
0



Recap : The brain

• The Brain is composed of networks of neurons

4
1



Recap : Nnets and the brain

• Neural nets are composed of networks of  
computational models of neurons called perceptrons

4
2



Recap: the perceptron

• A threshold unit

– “Fires” if the weighted sum of inputs exceeds a  
threshold

– Electrical engineers will call this a threshold gate

• A basic unit of Boolean circuits
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A better figure

• A threshold unit
– “Fires” if the affine function of inputs is positive

• The bias is the negative of the threshold T in the previous  
slide
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The “soft” perceptron (logistic)

• A “squashing” function instead of a threshold  
at the output

– The sigmoid “activation” replaces the threshold

• Activation: The function that acts on the weighted  
combination of inputs (and threshold)
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Other “activations”

• Does not always have to be a squashing function

– We will hear more about activations later

• We will continue to assume a “threshold” activation in this lecture

sigmoid tanh

+.
..

x1

x2

x3

xN
𝑏

𝑧

𝑦

𝑤1

𝑤2

𝑤3

𝑤N

tanh(𝑧)1

1 +exp(−𝑧)

log(1 +𝑒z)
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The multi-layer perceptron

• A network of perceptrons
– Perceptrons “feed” other  

perceptrons

– We give you the “formal” definition of a layer later

14



Defining “depth”

• What is a “deep” network

15



Deep Structures
• Layered deep structure

– The input is the “source”,

– The output nodes are “sinks”

• “Deep” Depth greater than 2

• “Depth” of a layer – the depth of the neurons in the layer w.r.t. input

Input: Black  
Layer 1: Red
Layer 2: Green
Layer 3: Yellow
Layer 4: Blue

17



The multi-layer perceptron

• Inputs are real or Boolean stimuli

• Outputs are real or Boolean values
– Can have multiple outputs for a single input

• What can this network compute?
– What kinds of input/output relationships can it model?

N.Net

18



MLPs approximate functions

2 1

X Y Z A

• MLPs can compose Boolean functions

• MLPs can compose real-valued functions

• What are the limitations?
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20

Today

• Multi-layer Perceptrons as universal Boolean  
functions

– The need for depth

• MLPs as universal classifiers

– The need for depth

• MLPs as universal approximators



he realsBooleans over t

x2

x1

• The network must fire if the input is in the coloured area
– The AND compares the sum of the hidden outputs to 5

• NB: What would the pattern be if it compared it to 4?

x1

x2
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AND
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More complex decision boundaries

• Network to fire if the input is in the yellow area

– “OR” two polygons

– A third layer is required

x2

AND AND

OR

x1 x1 x2

86



Complex decision boundaries

• Can compose arbitrarily complex decision  

boundaries

87



Complex decision boundaries

AND

OR

x1 x2

• Can compose arbitrarily complex decision  

boundaries

88



Complex decision boundaries

AND

OR

x1 x2

• Can compose arbitrarily complex decision boundaries

– With only one hidden layer!

– How?
89



Exercise: compose this with one  
hidden layer

• How would you compose the decision  

boundary to the left with only one hidden

x1 x2

x2

layer?
90
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Depth and the universal classifier

• Deeper networks can require far fewer neurons

x2

x1 x1 x2

105



Deep Neural Networks
Scanning for patterns 

(aka convolutional networks)



The model so far

• Can recognize patterns in data

– E.g. digits

– Or any other vector data

input  
layer

output layer

Or, more generally 
a vector input



A new problem

• Does this signal contain the word “Welcome”?

• Compose an MLP for this problem.

– Assuming all recordings are exactly the same length..
4



Finding a Welcome

• Trivial solution: Train an MLP for the entire 
recording

6
3



Finding a Welcome

• Problem with trivial solution: Network that finds a “welcome” in 
the top recording will not find it in the lower one

– Unless trained with both

– Will require a very large network and a large amount of training data 
to cover every case

6
4



Finding a Welcome

• Need a simple network that will fire regardless 

of the location of “Welcome”

– and not fire when there is none
6
5



Flowers

• Is there a flower in any of these images

6
6



A problem

• Will an MLP that recognizes the left image as a flower 

also recognize the one on the right as a flower?

input  
layer

output layer

9



A problem

• Need a network that will “fire” regardless of 

the precise location of the target object

10



The need for shift invariance

• In many problems the location of a pattern is not 
important

– Only the presence of the pattern

• Conventional MLPs are sensitive to the location of the 
pattern

– Moving it by one component results in an entirely different 
input that the MLP won’t recognize

• Requirement: Network must be shift invariant
11



Solution: Scan

• Scan for the target word

– The spectral time-frequency components in a 
“window” are input to a “welcome-detector” MLP

12
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Solution: Scan

• Scan for the target word

– The spectral time-frequency components in a 
“window” are input to a “welcome-detector” MLP

17



Solution: Scan

• “Does welcome occur in this recording?”
– We have classified many “windows” individually

– “Welcome” may have occurred in any of them

18



Solution: Scan

• “Does welcome occur in this recording?”

– Maximum of all the outputs (Equivalent of Boolean OR)

MAX

19



Solution: Scan

• “Does welcome occur in this recording?”

– Maximum of all the outputs (Equivalent of Boolean OR)

– Or a proper softmax/logistic

• Finding a welcome in adjacent windows makes it more likely that we didn’t find
noise

Perceptron

20



Solution: Scan

• “Does welcome occur in this recording?”

– Maximum of all the outputs (Equivalent of Boolean OR)

– Or a proper softmax/logistic

• Adjacent windows can combine their evidence

– Or even an MLP 21



Its actually just one giant network

• The entire operation can be viewed as one giant network
– With many subnetworks, one per window

– Restriction: All subnets are identical

• The network is shift-invariant!
23



The 2-d analogue: Does this picture
have a flower?

• Scan for the desired object

– “Look” for the target object at each position

Input
(the pixel data)

26



Solution: Scan

Flower detector MLP

27

• Scan for the desired object

• At each location, the entire region is sent 

through the MLP
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Solution: Scan

Flower detector MLP

40

• Scan for the desired object

• At each location, the entire region is sent 

through the MLP



Scanning the picture to find a flower

• Determine if any of the locations had a flower

– We get one classification output per scanned location

• Each dot in the right represents the output of the MLP when it classifies one location in the 
input figure

– The score output by the MLP

– Look at the maximum value

• If the picture has a flower, the location with the flower will result in high output value

max

41



Scanning the picture to find a flower

• Determine if any of the locations had a flower
• Each dot in the right represents the output of the MLP when it 

classifies one location in the input figure

– The score output by the MLP

– Look at the maximum value

– Or pass it through a softmax or even an MLP
42



Its just a giant network with common 
subnets

• The entire operation can be viewed as a single giant network

– Composed of many “subnets” (one per window)

– With one key feature: all subnets are identical

• The network is shift invariant.
44



Scanning: A closer look

• The “input layer” is just the pixels in the image 

connecting to the hidden layer

Input layer Hidden layer



Scanning: A closer look

• Scanning: Analyze windows of pixels starting

from top left, until the bottom right of the image

– Produce an output for every window analyzed

– Pass collection of outputs through a softmax
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Scanning: A closer look

• Consider a single neuron in the first layer

– At each position of the box, the neuron is evaluating a “window” of the 
picture at that location, as part of the classification for that region
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Scanning: A closer look

• Consider a single neuron in the first layer

– At each position of the box, the neuron is evaluating a “window” of the 
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• Let us compute the output of the first neuron for all the windows in the
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–

–
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We could arrange the outputs in correspondence to the original picture
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Scanning: A closer look
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Scanning: A closer look

• Let us compute the output of the first neuron for all the windows in 
the picture before computing the rest of the neurons

• Eventually, we can arrange the outputs from the response at the 
scanned positions into a rectangle that’s proportional in size to the 
original picture

BR2



Scanning: A closer look

• We can repeat the process for each of the first-layer 

neurons

– “Scan” the input with the neuron

– Arrange the neuron’s outputs from the scanned positions 

according to their positions in the original image 143



Scanning: A closer look

• To classify a specific “window” in the image, 

we send the first level activations from the 

positions corresponding to that position to the

next layer 144



Scanning: A closer look

145

• We can recurse the logic

– The second level neurons too can “scan” the rectangular outputs 
of the first-level neurons before computing subsequent layers

– (Un)like the first level, they must jointly scan multiple “maps”

• Each location in the output of the second level neuron considers the 
corresponding locations from the output maps of all the first-level
neurons
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Scanning: A closer look
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• We can recurse the logic

– The second level neurons too can “scan” the rectangular outputs 
of the first-level neurons before computing subsequent layers

– (Un)like the first level, they must jointly scan multiple “maps”

• Each location in the output of the second level neuron considers the 
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Scanning: A closer look

• To detect a picture at any location in the 

original image, the output layer must consider 

the corresponding outputs of the last hidden 

layer



Detecting a picture anywhere in the 
image?

• Recursing the logic, we can create a map for 

the neurons in the next layer as well

– The map is a flower detector for each location of 

the original image
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Detecting a picture anywhere in the 
image?

• To detect a picture at any location in the original image,
only need to consider the corresponding location of the
output map

• Actual problem? Is there a flower in the image

– Not “detect the location of a flower”



Detecting a picture anywhere in the 
image?

• Is there a flower in the picture?

• The entire output map can be sent into a final 

“max” to detect a flower in the full picture

– Or a softmax, or a full MLP…
157



Detecting a picture in the image

• Redrawing the final layer

– “Flatten” the output of the neurons into a single 

block, since the arrangement is no longer important

– Pass that through a max/softmax/MLP



The behavior of the layers

• The first layer neurons “look” at the entire “window” to extract window-
level features

– Subsequent layers only perform classification over these window-level features

• The first layer neurons is responsible for evaluating the entire window of 
pixels

– Subsequent layers only look at a single pixel in their input maps
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• We can distribute the pattern matching over two layers and 
still achieve the same block analysis at the second layer

– The first layer evaluates smaller blocks of pixels



Distributing the scan

• We can distribute the pattern matching over two layers and 
still achieve the same block analysis at the second layer

– The first layer evaluates smaller blocks of pixels



Distributing the scan

• We can distribute the pattern matching over two layers and 
still achieve the same block analysis at the second layer

– The first layer evaluates smaller blocks of pixels



Distributing the scan

• We can distribute the pattern matching over two layers and 
still achieve the same block analysis at the second layer

– The first layer evaluates smaller blocks of pixels



Distributing the scan

• We can distribute the pattern matching over two layers and 
still achieve the same block analysis at the second layer

– The first layer evaluates smaller blocks of pixels



Distributing the scan

• We can distribute the pattern matching over two layers and 
still achieve the same block analysis at the second layer

– The first layer evaluates smaller blocks of pixels



Distributing the scan

• We can distribute the pattern matching over two layers and 
still achieve the same block analysis at the second layer

– The first layer evaluates smaller blocks of pixels

– The next layer evaluates blocks of outputs from the first layer



Distributing the scan

• We can distribute the pattern matching over two layers and still 
achieve the same block analysis at the second layer

– The first layer evaluates smaller blocks of pixels

– The next layer evaluates the windows of outputs from the first layer

– This effectively evaluates the larger window of the original image

180



Distributing the scan

• We can distribute the pattern matching over two layers and 
still achieve the same block analysis at the second layer

– The first layer evaluates smaller blocks of pixels

– The next layer evaluates windows of outputs from the first layer

– This effectively evaluates the larger window of the original image
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Distributing the scan

• The window has been distributed over two layers

• The higher layer implicitly learns the

arrangement of sub patterns that represents the

larger pattern (the flower in this case)
182



Distributing the scan

• If second layer neurons scan the maps output by first-layer
neurons, they effectively scan the input with the full-sized
window

– Jointly scan all the first-layer maps

– Each output of the second-layer neuron represents the output for
one full-sized input window
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Distributing the scan

• If second layer neurons (jointly) scan the maps output by first-layer neurons, they 
effectively scan the input with the full-sized window

– Each output of the second-layer neuron represents the output for one full-sized input window

• To compute the MLP output for a window of input, the output neuron only needs to 
consider the corresponding outputs of second-layer maps



Distributing the scan

• If second layer neurons (jointly) scan the maps output by first-layer neurons, they 
effectively scan the input with the full-sized window

– Each output of the second-layer neuron represents the output for one full-sized input window

• To compute the MLP output for a window of input, the output neuron only needs to 
consider the corresponding outputs of second-layer maps

• The output neuron can compute its outputs for every window in the input from the 
values of the second layer maps (and send it to a subsequent softmax)
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This is still just scanning with a shared 
parameter network

• With a minor modification…



This is still just scanning with a shared 
parameter network

Each arrow represents an entire set
of weights over the smaller cell

The pattern of weights going out of
any cell is identical to that from any
other cell.

Colors indicate neurons 
with shared parameters Layer 1

• The network that analyzes individual blocks is

now itself a shared parameter network..



A different view

Filter applied to kth layer of maps 
(convolutive component plus bias)

• ..A stacked arrangement of planes

• We can view the joint processing of the various 

maps as processing the stack using a three-

dimensional filter

Stacked arrangement 
of kth layer of maps

61



The “cube” view of input maps

bias

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes
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One map

bias

The “cube” view of input maps

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes
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All maps

bias

The “cube” view of input maps

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes
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bias

The “cube” view of input maps

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes
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bias

The “cube” view of input maps

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes
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bias

The “cube” view of input maps

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes
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bias

The “cube” view of input maps

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes
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bias

The “cube” view of input maps

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes
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The other component 
Downsampling/Pooling

• Convolution (and activation) layers are followed intermittently by 
“downsampling with pooling” layers

– Typically (but not always) “max” pooling

– Often, they alternate with convolution, though this is not necessary

Multi-layer  
Perceptron

Output

85



Max pooling

• Max pooling selects the largest from a pool of 

elements

• Pooling is performed by “scanning” the input

Max

3 1

4 6
Max

6
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Recall: Max pooling

Max

1 3

6 5
Max

6

87

6

• Max pooling selects the largest from a pool of 

elements

• Pooling is performed by “scanning” the input



Recall: Max pooling

Max

3 2

5 7
Max
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• Max pooling selects the largest from a pool of 

elements

• Pooling is performed by “scanning” the input



Recall: Max pooling

Max

• Max pooling selects the largest from a pool of 

elements

• Pooling is performed by “scanning” the input
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Recall: Max pooling

Max

• Max pooling selects the largest from a pool of 

elements

• Pooling is performed by “scanning” the input
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Recall: Max pooling

Max

• Max pooling scans with a stride of 1 confer 

jitter-robustness, but do not constitute 

downsampling

• Downsampling requires a stride greater than 1
91



Downsampling requires Stride>1

• The “max pooling” operation with “stride” 
greater than 1 results in an output smaller than 
the input

– One output per stride

– The output is “downsampled”

Max

92



• The “max pooling” operation with “stride” 
greater than 1 results in an output smaller than 
the input

– One output per stride

– The output is “downsampled”

Max

Downsampling requires Stride>1
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• The “max pooling” operation with “stride” 
greater than 1 results in an output smaller than 
the input

– One output per stride

– The output is “downsampled”

Max

Downsampling requires Stride>1
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• The “max pooling” operation with “stride” 
greater than 1 results in an output smaller than 
the input

– One output per stride

– The output is “downsampled”

Max

Downsampling requires Stride>1
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• The “max pooling” operation with “stride” 
greater than 1 results in an output smaller than 
the input

– One output per stride

– The output is “downsampled”

Max

Downsampling requires Stride>1
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• The “max pooling” operation with “stride” 
greater than 1 results in an output smaller than 
the input

– One output per stride

– The output is “downsampled”

Max

Downsampling requires Stride>1
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• The “max pooling” operation with “stride” 
greater than 1 results in an output smaller than 
the input

– One output per stride

– The output is “downsampled”

Max

Downsampling requires Stride>1

98



• The “max pooling” operation with “stride” 
greater than 1 results in an output smaller than 
the input

– One output per stride

– The output is “downsampled”

Max

Downsampling requires Stride>1
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• The “max pooling” operation with “stride” 
greater than 1 results in an output smaller than 
the input

– One output per stride

– The output is “downsampled”

Downsampling requires Stride>1

Max

100



Deep Learning 

Recurrent Networks

1
7
7



What did I say?

• Speech Recognition

– Analyze a series of spectral vectors, determine what was said

• Note: Inputs are sequences of vectors. Output is a 
classification result

“To be” or not “to be”??

1
7
8



What is he talking about?
“Football” or “basketball”?

• Text analysis

– E.g. analyze document, identify topic

• Input series of words, output classification output

– E.g. read English, output French

• Input series of words, output series of words

The Steelers, meanwhile, continue to struggle to make stops on 
defense. They've allowed, on average, 30 points a game, and have 
shown no signs of improving anytime soon.

1
7
9



Should I invest..
To invest or not to invest?

7/03 8/03 9/03 10/03 11/03 12/03 13/03 14/03 15/03

• Note: Inputs are sequences of vectors. Output may be 
scalar or vector

– Should I invest, vs. should I not invest in X?

– Decision must be taken considering how things have fared over 
time

st
o

ck
s

10



11

These are classification and 
prediction problems

• Consider a sequence of inputs

– Input vectors

• Produce one or more outputs

• This can be done with neural networks

– Obviously



Representational shortcut

• Input at each time is a vector

• Each layer has many neurons

– Output layer too may have many neurons

• But will represent everything by simple boxes

– Each box actually represents an entire layer with many units
12



Representational shortcut

• Input at each time is a vector

• Each layer has many neurons

– Output layer too may have many neurons

But will represent everything by simple boxes

– Each box actually represents an entire layer with many units

•
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Representational shortcut

• Input at each time is a vector

• Each layer has many neurons

– Output layer too may have many neurons

• But will represent everything as simple boxes

– Each box actually represents an entire layer with many units
14



The stock prediction problem…
To invest or not to invest?

7/03 8/03 9/03 10/03 11/03 12/03 13/03 14/03 15/03

• Stock market

– Must consider the series of stock values in the past 

several days to decide if it is wise to invest today

• Ideally consider all of history

st
o

ck
s

15



The stock predictor network

Stock 
vector

Time

• The sliding predictor
– Look at the last few days

– This is just a convolutional neural net applied to series data
• Also called a Time-Delay neural network

16
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The stock predictor network

Stock 
vector

Time

• The sliding predictor
– Look at the last few days

– This is just a convolutional neural net applied to series data
• Also called a Time-Delay neural network

17
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The stock predictor network

Stock 
vector

Time

• The sliding predictor
– Look at the last few days

– This is just a convolutional neural net applied to series data
• Also called a Time-Delay neural network

18
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The stock predictor network

Stock 
vector

Time

• The sliding predictor
– Look at the last few days

– This is just a convolutional neural net applied to series data
• Also called a Time-Delay neural network

19
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The stock predictor network

Stock 
vector

Time

• The sliding predictor
– Look at the last few days

– This is just a convolutional neural net applied to series data
• Also called a Time-Delay neural network

20
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Finite-response model

• This is a finite response system

– Something that happens today only affects the 
output of the system for days into the future

• is the width of the system

21



The stock predictor

Stock 
vector

X(T-3) X(T-2) X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)

Y(t-1)

Time

• This is a finite response system

– Something that happens today only affects the output of the 
system for days into the future

• is the width of the system

22



The stock predictor

Y(T)

Stock 
vector

X(T-3) X(T-2)

Time

• This is a finite response system

– Something that happens today only affects the output of the 
system for days into the future

• is the width of the system

X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)
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The stock predictor

Y(T+1)

Stock 
vector

X(T-3) X(T-2)

Time

• This is a finite response system

– Something that happens today only affects the output of the 
system for days into the future

• is the width of the system

X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)
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The stock predictor

Stock 
vector

X(T-3) X(T-2)

Y(T+2)

Time

• This is a finite response system

– Something that happens today only affects the output of the 
system for days into the future

• is the width of the system

X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)
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The stock predictor

Stock 
vector

X(T-3) X(T-2)

Y(T+3)

Time

• This is a finite response system

– Something that happens today only affects the output of the 
system for days into the future

• is the width of the system

X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)
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The stock predictor

Stock 
vector

X(T-3) X(T-2)

Y(T+4)

Time

• This is a finite response system

– Something that happens today only affects the output of the 
system for days into the future

• is the width of the system

X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)
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Finite-response model

Time

• Something that happens today only affects the output of the 
system for days into the future

– Predictions consider N days of history

• To consider more of the past to make predictions, you must 
increase the “history” considered by the system

Stock 
vector

X(T-3) X(T-2)

Y(T+3)

28
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Finite-response

Stock 
vector

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Time

• Problem: Increasing the “history” makes the 
network more complex

– No worries, we have the CPU and memory

• Or do we?

Y(t+6)

29



Systems often have long-term 
dependencies

• Longer-term trends –

– Weekly trends in the market

– Monthly trends in the market

– Annual trends

– Though longer historic tends to affect us less than more 
recent events.. 30



We want infinite memory

Time

• Required: Infinite response systems
– What happens today can continue to affect the output 

forever
• Possibly with weaker and weaker influence

31



• A NARX net with recursion from the output

Time
X(t)

Y(t) Y

A one-tap NARX network

36



A one-tap NARX network

• A NARX net with recursion from the output

Time

37

X(t)

Y(t)



• A NARX net with recursion from the output

Time
X(t)

Y(t)

A one-tap NARX network
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• A NARX net with recursion from the output

Time
X(t)

Y(t)

A one-tap NARX network
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• A NARX net with recursion from the output

Time
X(t)

Y(t)

A one-tap NARX network
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• A NARX net with recursion from the output

Time
X(t)

Y(t)

A one-tap NARX network
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• A NARX net with recursion from the output

Time
X(t)

Y(t)

A one-tap NARX network
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A more complete representation

• A NARX net with recursion from the output

• Showing all computations

• All columns are identical

• An input at t=0 affects outputs forever

Time

43

X(t)

Y(t-1)

Brown boxes show output layers 
Yellow boxes are outputs



Same figure redrawn

• A NARX net with recursion from the output

Time

Brown boxes show output layers
All outgoing arrows are the same output

•

•

•

Showing all computations

All columns are identical

An input at t=0 affects outputs forever
44
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A more generic NARX network

is computed from the

and the current

• The output at time 

past outputs 

and past inputs

Time

45

X(t)

Y(t)



A “complete” NARX network

• The output at time is computed from all

past outputs and all inputs until time t

– Not really a practical model

Time

46

X(t)

Y(t)



The simple state-space model

• The state (green) at any time is determined by the input at 
that time, and the state at the previous time

• An input at t=0 affects outputs forever

• Also known as a recurrent neural net

Y(t)

h (-1)

X(t)

t=0

Time

55
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An alternate model for infinite response 
systems: the state-space model

• is the state of the network

• Need to define initial state

• The state an be arbitrarily complex

56



Single hidden layer RNN

Time

•

•

•

Recurrent neural network

All columns are identical

An input at t=0 affects outputs forever
57

Y(t)

h (-1)

X(t)

t=0



Multiple recurrent layer RNN

Time

•

•

•

Recurrent neural network

All columns are identical

An input at t=0 affects outputs forever
58
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Multiple recurrent layer RNN

• We can also have skips..

Time

59

Y(t)

h(2) (-1)

h(1)(-1)

X(t)

t=0



A more complex state

• All columns are identical

• An input at t=0 affects outputs forever

Time

60
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Or the network may be even more 
complicated

• Shades of NARX

• All columns are identical

• An input at t=0 affects outputs forever

Time

61
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Generalization with other recurrences

• All columns (including incoming edges) are 

identical

Time
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Y(t)
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The simplest structures are most 
popular

• Recurrent neural network

• All columns are identical

• An input at t=0 affects outputs forever

Time

63

Y(t)

X(t)

t=0



A Recurrent Neural Network

• Simplified models often drawn

• The loops imply recurrence

64



The detailed version of the simplified 
representation

Y(t)

h (-1)

X(t)

t=0

65Time



Multiple recurrent layer RNN

Y(t)

h(2) (-1)

h(1)(-1)
X(t)

t=0
66Time



Multiple recurrent layer RNN

Time

Y(t)

X(t)

t=0
67



Equations

• Note superscript in indexing, which indicates layer of 
network from which inputs are obtained

• Assuming vector function at output, e.g. softmax

• The state node activation, is typically

2
2 1

j k j
2

k

j

i
1

1
1

j i j

j

i
11 1

j i

j

i
1

1
i

(1)

Recurrent weightsCurrent weights

• Every neuron also has a bias input
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Equations

3
3 2

j k j
3

k

j

i
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2
2 1

j i j

j

i
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j i

j

i
2

i
1

• Assuming vector function at output, e.g. softmax

• The state node activations, are typically

i
2

i
1

1
1

j i j

j

i
11 1

j i

j

i
1

(1)

(2)

• Every neuron also has a bias input
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Variants on recurrent nets

• 1: Conventional MLP
• 2: Sequence generation, e.g. image to caption
• 3: Sequence based prediction or classification, e.g. Speech recognition, 

text classification

Images from 
Karpathy

71



Variants

• 1: Delayed sequence to sequence, e.g. machine translation

• 2: Sequence to sequence, e.g. stock problem, label prediction

• Etc…

Images from 
Karpathy

72



Deep Learning

Sequence to Sequence models: 
Attention Models

2
3
0



Sequence-to-sequence modelling

• Problem:

– A sequence 1 N goes in

1 M comes out– A different sequence

• E.g.

– Speech recognition: Speech goes in, a word sequence comes out

• Alternately output may be phoneme or character sequence

– Machine translation: Word sequence goes in, word sequence comes 
out

– Dialog : User statement goes in, system response comes out

– Question answering :  Question comes in, answer goes out

• In general

– No synchrony between and .

2
3
1



Sequence to sequence

Seq2seq

Seq2seqI ate an apple Ich habe einen apfel gegessen

I ate an apple

• Sequence goes in, sequence comes out

• No notion of “time synchrony” between input and output

– May even not even maintain order of symbols
• E.g. “I ate an apple”→ “Ich habe einen apfel gegessen”

v

– Or even seem related to the input

• E.g. “My screen is blank”→ “Please check if your computer is plugged in.”

2
3
2



2
3
3

Recap: Predicting text

• Simple problem: Given a series of symbols 
(characters or words) w1 w2… wn, predict the 
next symbol (character or word) wn+1



2
3
4

Language modelling using RNNs

• Problem: Given a sequence of words (or 
characters) predict the next one

– The problem of learning the sequential structure 
of language

Four score and seven years ???

A B R A H A M L I N C O L ??



Simple recurrence : Text Modelling

• Learn a model that can predict the next symbol 
given a sequence of symbols

– Characters or words

• After observing inputs it predicts

– In reality, outputs a probability distribution for

h-1

0 1 2 3 4 5 6

1 2 3 4 5 6 7

2
3
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Generating Language: The model

• Input: symbols as one-hot vectors

• Dimensionality of the vector is the size of the “vocabulary”

• Projected down to lower-dimensional “embeddings”

• The hidden units are (one or more layers of) LSTM units

• Output at each time: A probability distribution for the next word in the sequence

• All parameters are trained via backpropagation from a lot of text

1 2 3 4 5 6 7 8 9

5 6 7 8 9 102 3 4

2
3
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Modelling the problem

• Delayed sequence to sequence

22



Modelling the problem

• Delayed sequence to sequence

First process the input 
and generate a hidden 
representation for it

23



Modelling the problem

• Delayed sequence to sequence

Then use it to generate 
an output

25

First process the input 
and generate a hidden 
representation for it



Modelling the problem

• Problem: Each word that is output depends only on 

current hidden state, and not on previous outputs

Then use it to generate 
an output

28

First process the input 
and generate a hidden 
representation for it



Modelling the problem

• Delayed sequence to sequence

– Delayed self-referencing sequence-to-sequence
30



The “simple” translation model

• The input sequence feeds into a recurrent structure

• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

I ate an apple <eos>

31



The “simple” translation model

• The input sequence feeds into a recurrent structure

• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

• Subsequently a second RNN uses the hidden activation as initial state, and
<sos> as initial symbol, to produce a sequence of outputs

– The output at each time becomes the input at the next time

– Output production continues until an <eos> is produced

I ate an

32

apple <eos>



The “simple” translation model

• The input sequence feeds into a recurrent structure

• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

apple <eos> <sos>

• Subsequently a second RNN uses the hidden activation as initial state to
produce a sequence of outputs

–

–

The output at each time becomes the input at the next time

Output production continues until an <eos> is produced
33

Ich

I ate an



The “simple” translation model

• The input sequence feeds into a recurrent structure

• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

Ich habe

• Subsequently a second RNN uses the hidden activation as initial state to
produce a sequence of outputs

–

–

The output at each time becomes the input at the next time

Output production continues until an <eos> is produced
34

Ichapple <eos> <sos>I ate an



The “simple” translation model

• The input sequence feeds into a recurrent structure

• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

apple <eos> <sos>

• Subsequently a second RNN uses the hidden activation as initial state to
produce a sequence of outputs

–

–

The output at each time becomes the input at the next time

Output production continues until an <eos> is produced
35

Ich habe einen

Ich habeI ate an



The “simple” translation model

• The input sequence feeds into a recurrent structure

• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

apple <eos> <sos>

• Subsequently a second RNN uses the hidden activation as initial state to
produce a sequence of outputs

–

–

The output at each time becomes the input at the next time

Output production continues until an <eos> is produced
36

Ich habe einen apfel gegessen <eos>

Ich habe einen apfel gegessenI ate an



The “simple” translation model
Ich habe einen apfel gegessen <eos>

Ich habe einen apfel gegessenI ate an apple <eos> <sos>

Note that drawing a different word here

Would result in a different word being input here, and as a 
result the output here and subsequent outputs would all change

37



• We will illustrate with a single hidden layer, but the 
discussion generalizes to more layers

I ate an apple <eos> <sos>

Ich

Ich habe einen apfel gegessen <eos>

Ich habe einen

habe einen apfel

apfel gegessen

gegessen <eos>

I ate an

38

apple <eos> <sos> Ich habe einen apfel gegessen



The “simple” translation model

• The recurrent structure that extracts the hidden 
representation from the input sequence is the encoder

• The recurrent structure that utilizes this representation 
to produce the output sequence is the decoder

ENCODER

DECODER

Ich habe einen apfel gegessen <eos>

Ich habe einen apfel gegessenI ate an apple <eos> <sos>

41



The “simple” translation model

• A more detailed look: The one-hot word 
representations may be compressed via embeddings

– Embeddings will be learned along with the rest of the net

– In the following slides we will not represent the projection 
matrices

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos> Ich habe einen apfel gegessen

1 1 1 1 1 2 2 2 2 22
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What the network actually produces

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary

k– 𝑦w = 𝑃 𝑂k = 𝑤|𝑂k– 1,… ,𝑂1 , 𝐼1,… , 𝐼N

– The probability given the entire input sequence 𝐼1,… , 𝐼N and the partial output sequence 𝑂1,… ,𝑂k–1 until 𝑘

• At each time a word is drawn from the output distribution

• The drawn word is provided as input to the next time

𝑦ich  
0

𝑦apfel
0

𝑦bier  
0

…

𝑦<eos

>
0

I ate an apple <eos><sos>
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What the network actually produces
Ich

𝑦ich  
0

𝑦apfel
0

𝑦bier  
0

…

𝑦<eos
0

I ate an

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary

𝑦w–

–

= 𝑃 𝑂k = 𝑤|𝑂k– 1,… ,𝑂1 , 𝐼1,… , 𝐼Nk

The probability given the entire input sequence 𝐼1,… , 𝐼N and the partial output sequence 𝑂1,… ,𝑂k–1 until 𝑘

•

•

At each time a word is drawn from the output distribution

The drawn word is provided as input to the next time
44

apple <eos><sos>



What the network actually produces
Ich

𝑦ich  
0

𝑦apfel
0

𝑦bier  
0

…

𝑦<eos

>
0

IchI ate an

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary

𝑦w–

–

= 𝑃 𝑂k = 𝑤|𝑂k– 1,… ,𝑂1 , 𝐼1,… , 𝐼Nk

The probability given the entire input sequence 𝐼1,… , 𝐼N and the partial output sequence 𝑂1,… ,𝑂k–1 until 𝑘

•

•

At each time a word is drawn from the output distribution

The drawn word is provided as input to the next time
45

apple <eos><sos>



What the network actually produces
Ich

𝑦ich  
0

𝑦a p f e

l
0

𝑦bier  
0

…

𝑦<eos

>
0

𝑦ich  
1

𝑦apfel
1

𝑦bier  
1

…

𝑦<eos

>
1

IchI ate an

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary

𝑦w–

–

= 𝑃 𝑂k = 𝑤|𝑂k– 1,… ,𝑂1 , 𝐼1,… , 𝐼Nk

The probability given the entire input sequence 𝐼1,… , 𝐼N and the partial output sequence 𝑂1,… ,𝑂k–1 until 𝑘

•

•

At each time a word is drawn from the output distribution

The drawn word is provided as input to the next time
46

apple <eos><sos>



What the network actually produces
Ich habe

𝑦ich  
0

𝑦a p f e

l
0

𝑦bier  
0

…

𝑦<eos

>
0

𝑦ich  
1

𝑦apfel
1

𝑦bier  
1

…

𝑦<eos

>
1

IchI ate an

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary

𝑦w–

–

= 𝑃 𝑂k = 𝑤|𝑂k– 1,… ,𝑂1 , 𝐼1,… , 𝐼Nk

The probability given the entire input sequence 𝐼1,… , 𝐼N and the partial output sequence 𝑂1,… ,𝑂k–1 until 𝑘

•

•

At each time a word is drawn from the output distribution

The drawn word is provided as input to the next time
47

apple <eos><sos>



What the network actually produces
Ich habe

𝑦ich  
0

𝑦a p f e

l
0

𝑦bier  
0

…

𝑦<eos

>
0

𝑦ich  
1

𝑦a p f e

l
1

𝑦bier  
1

…

𝑦<eos

>
1

Ich habeI ate an

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary

𝑦w–

–

= 𝑃 𝑂k = 𝑤|𝑂k– 1,… ,𝑂1 , 𝐼1,… , 𝐼Nk

The probability given the entire input sequence 𝐼1,… , 𝐼N and the partial output sequence 𝑂1,… ,𝑂k–1 until 𝑘

•

•

At each time a word is drawn from the output distribution

The drawn word is provided as input to the next time
48

apple <eos><sos>



What the network actually produces
Ich habe

𝑦ich  
0

𝑦a p f e

l
0

𝑦bier  
0

…

𝑦<eos

>
0

𝑦ich  
1

𝑦a p f e

l
1

𝑦bier  
1

…

𝑦<eos

>
1

𝑦ich  
2

𝑦apfel
2

𝑦bier  
2

…

𝑦<eos

>
2

Ich habeI ate an

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary

𝑦w–

–

= 𝑃 𝑂k = 𝑤|𝑂k– 1,… ,𝑂1 , 𝐼1,… , 𝐼Nk

The probability given the entire input sequence 𝐼1,… , 𝐼N and the partial output sequence 𝑂1,… ,𝑂k–1 until 𝑘

•

•

At each time a word is drawn from the output distribution

The drawn word is provided as input to the next time
49
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What the network actually produces
Ich habe einen

𝑦ich  
0

𝑦a p f e

l
0

𝑦bier  
0

…

𝑦<eos

>
0

𝑦ich  
1

𝑦a p f e

l
1

𝑦bier  
1

…

𝑦<eos

>
1

𝑦ich  
2

𝑦apfel
2

𝑦bier  
2

…

𝑦<eos

>
2

Ich habeI ate an

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary

𝑦w–

–

= 𝑃 𝑂k = 𝑤|𝑂k– 1,… ,𝑂1 , 𝐼1,… , 𝐼Nk

The probability given the entire input sequence 𝐼1,… , 𝐼N and the partial output sequence 𝑂1,… ,𝑂k–1 until 𝑘

•

•

At each time a word is drawn from the output distribution

The drawn word is provided as input to the next time
50

apple <eos><sos>



What the network actually produces
Ich habe einen apfel gegessen <eos>

𝑦ich  
0

𝑦a p f e

l
0

𝑦bier  
0

…

𝑦<eos

>
0

𝑦ich  
1

𝑦a p f e

l
1

𝑦bier  
1

…

𝑦<eos

>
1

𝑦ich  
2

𝑦apfel
2

𝑦bier  
2

…

𝑦<eos

>
2

𝑦ich  
3

𝑦apfel
3

𝑦bier  
3

…

𝑦<eos

>
3

𝑦ich  
4

𝑦apfel
4

𝑦bier  
4

…

𝑦<eos

>
4

𝑦ich  
5

𝑦apfel
5

𝑦bier  
5

…

𝑦<eos

>
5

Ich habe einen apfel gegessenI ate an

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary

𝑦w–

–

= 𝑃 𝑂k = 𝑤|𝑂k– 1,… ,𝑂1 , 𝐼1,… , 𝐼Nk

The probability given the entire input sequence 𝐼1,… , 𝐼N and the partial output sequence 𝑂1,… ,𝑂k–1 until 𝑘

•

•

At each time a word is drawn from the output distribution

The drawn word is provided as input to the next time
51

apple <eos><sos>



Generating an output from the net

• At each time the network produces a probability distribution over words, given the entire input and 
entire output sequence so far

• At each time a word is drawn from the output distribution

• The drawn word is provided as input to the next time

𝑦ich  
0

𝑦a p f e

l
0

𝑦bier  
0

…

𝑦<eos

>
0

𝑦ich  
1

𝑦a p f e

l
1

𝑦bier  
1

…

𝑦<eos

>
1

𝑦ich  
2

𝑦apfel
2

𝑦bier  
2

…

𝑦<eos

>
2

𝑦ich  
3

𝑦apfel
3

𝑦bier  
3

…

𝑦<eos

>
3

𝑦ich  
4

𝑦apfel
4

𝑦bier  
4

…

𝑦<eos

>
4

𝑦ich  
5

𝑦apfel
5

𝑦bier  
5

…

𝑦<eos

>
5

Ich habe einen apfel gegessen <eos>

Ich habe einen apfel gegessenI ate an

• The process continues until an <eos> is generated
52

apple <eos><sos>



The probability of the output

1 L 1 N

1 1…N N 3 1 2 1 N L 1 L– 1 1 N2 1 1

01 02
1 2

N

0 L  
L
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𝑦ich  
0

𝑦a p f e

l
0

𝑦bier  
0

…

𝑦<eos

>
0

𝑦ich  
1

𝑦a p f e

l
1

𝑦bier  
1

…

𝑦<eos

>
1

𝑦ich  
2

𝑦apfel
2

𝑦bier  
2

…

𝑦<eos
2

𝑦ich  
3

𝑦apfel
3

𝑦bier  
3

…

𝑦<eos

>
3

𝑦ich  
4

𝑦apfel
4

𝑦bier  
4

…

𝑦<eos

>
4

𝑦ich  
5

𝑦apfel
5

𝑦bier  
5

…

𝑦<eos

>
5

O1 O2 O3 O4 O5 <eos>

O1 O2 O3 O4 O5I ate an apple <eos><sos>



The probability of the output

• The objective of drawing: Produce the most likely output (that ends in an <eos>)

01,…,0L

in
1 L 1

in  
N

01,…,0L

01 02
1 2

0 L  
L
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𝑦ich  
0

𝑦a p f e

l
0

𝑦bier  
0

…

𝑦<eos

>
0

𝑦ich  
1

𝑦a p f e

l
1

𝑦bier  
1

…

𝑦<eos
1

𝑦ich  
2

𝑦apfel
2

𝑦bier  
2

…

𝑦<eos
2

𝑦ich  
3

𝑦apfel
3

𝑦bier  
3

…

𝑦<eos
3

𝑦ich  
4

𝑦apfel
4

𝑦bier  
4

…

𝑦<eos
4

𝑦ich  
5

𝑦apfel
5

𝑦bier  
5

…

𝑦<eos

>
5

O1 O2 O3 O4 O5 <eos>

O1 O2 O3 O4 O5I ate an apple <eos><sos>



Greedy drawing

• So how do we draw words at each time to get the most likely word 
sequence?

• Greedy answer – select the most probable word at each time

56

𝑦ich  
0

𝑦a p f e

l
0

𝑦bier  
0

…

𝑦<eos

>
0

𝑦ich  
1

𝑦a p f e

l
1

𝑦bier  
1

…

𝑦<eos

>
1

𝑦ich  
2

𝑦apfel
2

𝑦bier  
2

…

𝑦<eos

>
2

𝑦ich  
3

𝑦apfel
3

𝑦bier  
3

…

𝑦<eos

>
3

𝑦ich  
4

𝑦apfel
4

𝑦bier  
4

…

𝑦<eos

>
4

𝑦ich  
5

𝑦apfel
5

𝑦bier  
5

…

𝑦<eos

>
5

Objective:

01,…,0L

01 02
1 2

0 L  
L

O1 O2 O3 O4 O5 <eos>

O1 O2 O3 O4 O5I ate an apple <eos><sos>



Generating Image Captions

• Not really a seq-to-seq problem, more an image-to-sequence problem

• Initial state is produced by a state-of-art CNN-based image classification 
system

– Subsequent model is just the decoder end of a seq-to-seq model

• “Show and Tell: A Neural Image Caption Generator”, O. Vinyals, A. Toshev, S. Bengio, D. 
Erhan

CNN

Image

97



Generating Image Captions

• Decoding: Given image

– Process it with CNN to get output of classification layer

98



Generating Image Captions

output distribution t 0 1 t– 1

– In practice, we can perform the beam search explained earlier
99

A
a  
0

boy
0
c a t
0

<sos>

• Decoding: Given image

– Process it with CNN to get output of classification layer

– Sequentially generate words by drawing from the conditional



Generating Image Captions

output distribution t 0 1 t– 1

– In practice, we can perform the beam search explained earlier
100

A boy
a  
0

boy  
0
ca t  
0

a  
1

boy  
1
ca t  
1

<sos> A

• Decoding: Given image

– Process it with CNN to get output of classification layer

– Sequentially generate words by drawing from the conditional



Generating Image Captions

output distribution t 0 1 t– 1

– In practice, we can perform the beam search explained earlier
101

A boy on
a  
0

boy  
0
ca t  
0

a  
1

boy  
1
ca t  
1

a  
2

boy
2

cat  
2

<sos> A boy

• Decoding: Given image

– Process it with CNN to get output of classification layer

– Sequentially generate words by drawing from the conditional



Generating Image Captions

output distribution t 0 1 t– 1

– In practice, we can perform the beam search explained earlier
102

A boy on a
a  
0

boy  
0
ca t  
0

a  
1

boy  
1
ca t  
1

a  
2

boy
2
ca t  
2

a  
3

boy
3
ca t  
3

<sos> A boy on

• Decoding: Given image

– Process it with CNN to get output of classification layer

– Sequentially generate words by drawing from the conditional



Generating Image Captions

• Decoding: Given image

– Process it with CNN to get output of classification layer

– Sequentially generate words by drawing from the conditional
output distribution t 0 1 t– 1

– In practice, we can perform the beam search explained earlier
103

A boy on a surfboard

a

a  
0

boy  
0
ca t  
0

a  
1

boy  
1
ca t  
1

a  
2

boy
2
ca t  
2

a  
3

boy
3
ca t  
3

a  
4

boy
4
ca t  
4

<sos> A boy on



Generating Image Captions

• Decoding: Given image

– Process it with CNN to get output of classification layer

– Sequentially generate words by drawing from the conditional
output distribution t 0 1 t– 1

– In practice, we can perform the beam search explained earlier
104

A boy on a surfboard<eos>

a surfboard

a  
0

boy  
0
ca t  
0

a  
1

boy  
1
ca t  
1

a  
2

boy
2
ca t  
2

a  
3

boy
3
ca t  
3

a  
4

boy
4
ca t  
4

a  
5

boy
5
c a t
5

<sos> A boy on



Examples from Vinyals et al.

108



Variants
Ich habe einen apfel gegessen <eos>

109
<sos>

an ate I<eos> apple

<sos>

A better model: Encoded 
input embedding is input to 
all output timesteps

A boy on a surfboard

A boy on a surfboard <eos>



A problem with this framework

I ate an apple <eos>

• In reality: All hidden values carry information

– Some of which may be diluted by the time we get to the final state of the 
encoder

114



A problem with this framework

• In reality: All hidden values carry information

– Some of which may be diluted by the time we get to the final state of the 
encoder

• Every output is related to the input directly

– Not sufficient to have the encoder hidden state to only the initial state of the 
decoder

– Misses the direct relation of the outputs to the inputs

einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos> Ich habe

115



Using all input hidden states
Ich habe einen apfel gegessen <eos>

• Simple solution: Compute the average of all encoder hidden states

• Input this average to every stage of the decoder

• The initial decoder hidden state is now separate from the encoder

– And may be a learnable parameter

Ich habe einen apfel gegessen

I ate an apple <eos>

<sos>

1
Average =

N i
N
i

116



Using all input hidden states
Ich habe einen apfel gegessen <eos>

• Problem: The average applies the same weight to every input

• It supplies the same average to every output word

• In practice, different outputs may be related to different inputs

– E.g. “Ich” is most related to “I”, and “habe” and “gegessen” are both 
most related to “ate”

Ich habe einen apfel gegessen

I ate an apple <eos>

<sos>

1
Average =

N i
N
i

117



5420 1 3

Using all input hidden states

• Solution: Use a different weighted average for each output word

– The weighted average provided for the kth output word is:

N

t i i

i

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos> Ich habe einen apfel gegessen

118



0

Using all input hidden states

• Solution: Use a different weighted average for each output word

– The weighted average provided for the kth output word is:

N

Ich

I ate an apple <eos> <sos>

0 1 2 3– 1 4

0 i i

i
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0

1

Using all input hidden states

• Solution: Use a different weighted average for each output word

– The weighted average provided for the kth output word is:

N

Ich habe

I ate an apple <eos> <sos> Ich

0 1 2 3– 1 4

1 i i

i

120



1
0

2

Using all input hidden states

• Solution: Use a different weighted average for each output word

– The weighted average provided for the kth output word is:

N

Ich habe einen

I ate an apple <eos> <sos> Ich habe

0 1 2 3– 1 4

2 i i

i

121



21
0

3

Using all input hidden states

• Solution: Use a different weighted average for each output word

– The weighted average provided for the kth output word is:

N

Ich habe einen apfel

I ate an apple <eos> <sos> Ich habe einen

0 1 2 3– 1 4

3 i i

i

122



321
0

4

Using all input hidden states

• Solution: Use a different weighted average for each output word

– The weighted average provided for the kth output word is:

N

Ich habe einen apfel gegessen

I ate an apple <eos> <sos> Ich habe einen apfel

0 1 2 3– 1 4

4 i i

i

123



4

0

5

Using all input hidden states

• Solution: Use a different weighted average for each output word

– The weighted average provided for the kth output word is:

N

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos> Ich habe einen apfel gegessen

0 1 2 3– 1 4

321

5 i i

i

124



4 50 1 2 3

Using all input hidden states

t

N

• This solution will work if the weights 
right input word

i i

i

ki can somehow be made to “focus” on the

– E.g., when predicting the word “apfel”, 𝑤3(4), the weight for “apple” must be high while the 
rest must be low

• How do we generate such weights?? 125

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

0 1 2 3– 1 4



20 1 3

Attention Models

t i i

N

i

i• Attention weights: The weights are dynamically computed as functions of 
decoder state

– Expectation: if the model is well-trained, this will automatically “highlight” the correct input

• But how are these computed?

Ich habe einen apfel gegessen

Ich habe einen apfel

4 5

gegessen <eos>

I ate an apple <eos> <sos>

0 1 2 3– 1 4

–1 0 1 2 3 4 5
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3

Attention weights at time

i at time

)• The primary information is t–1 (the state at time time

– Also, the input at time , but generally not used for simplicity

i i t–1

Ich habe einen

I ate an

• The weights 
at time

apple <eos> <sos> Ich habe einen

must be computed from available information

0 1 2 3– 1 4

–1 0 1 2
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3

Requirement on attention weights

i

– I.e. be a distribution

– Ideally, they must be high for the most relevant inputs for the ith output and low elsewhere

einen

Ich habe einen

I ate an

• The weights must be positive and sum to 1.0

apple <eos>
<sos> Ich habe

0 1 2 3– 1 4

–1 0 1 2

𝑤i 𝑡 : Sum to 1.0

i i i

128

N

i



3

Requirement on attention weights

i

– I.e. be a distribution

– Ideally, they must be high for the most relevant inputs for the ith output and low elsewhere

• Solution: A two step weight computation

– First compute raw weights (which could be +ve or –ve)

– Then softmax them to convert them to a distribution 129

einen

Ich habe einen

I ate an

• The weights must be positive and sum to 1.0

apple <eos>
<sos> Ich habe

0 1 2 3– 1 4

–1 0 1 2

𝑤i 𝑡 : Sum to 1.0

i i i

N

i

i
i

jj

i i t– 1



0

1

Using all input hidden states

Ich

I ate an apple <eos>

<sos> Ich

0 1 2 3– 1 4

–1 0

Ni i 0

i 1 i i
i

ijj
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1
0

2

Using all input hidden states

Ich habe

Ich habe

I ate an apple <eos>

<sos>

0 1 2 3– 1 4

–1 0 1

Ni i 1

i 2 i i
i

ijj
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21
0

3

Using all input hidden states

Ich habe einen

Ich habe einen

<sos>

I ate an apple <eos>

0 1 2 3– 1 4

– 1 0 1 2

Ni i 2

i 3 i i
i

ijj
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321
0

4

Using all input hidden states

Ich habe einen apfel

Ich habe einen apfel

<sos>

I ate an apple <eos>

0 1 2 3– 1 4

– 1 0 1 2 3

Ni i 3

i 4 i i
i

ijj
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4

0

5

Using all input hidden states

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

<sos>

321

I ate an apple <eos>

0 1 2 3– 1 4

– 1 0 1 2 3 4

Ni i 4

i 5 i i
i

ijj
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• “Raw” weight at any time: A function 
two hidden states

• Actual weight: softmax over raw weights

that works on the

138

I ate an apple <eos>

0 1 2 3 4–1

–1 0 1 2 3 4 5

Input to hidden decoder
layer: i i i

Ich habe einen

Summarizing the computation
Ich habe einen

Sum to 1.0

<sos>



• Typical options for …

– Variables in red are to be learned 139

I ate an apple <eos>

0 1 2 3 4–1

–1 0 1 2 3 4 5

Ich habe einen

Attention models
Ich habe einen

T
i t–1 i t–1

T
i t–1 i g t–1

i t– 1
T  
g g

i

t– 1

i t– 1 i t– 1

<sos>



Converting an input (forward pass)

• Pass the input through the encoder to 

produce hidden representations 140

I ate an apple <eos>

0 1 2 3 4–1



• Initialize decoder hidden state

141

I ate an apple <eos>

0 1 2 3 4–1

–1

Converting an input (forward pass)

What is this? 
Multiple options

Simplest: – 1

Alternative: learn – 1

Alternative 2: – 1 N
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–1 s N

s is learnable parameter
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• Produce the first output

– Will be distribution over words 144
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• Produce the first output

– Will be distribution over words

– Draw a word from the distribution 145
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• Compute the weights for all instances for 

time = 1 146
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• Compute the weighted sum of hidden input 

values at t=1 147

I ate an apple <eos>

0 1 2 3 4–1

–1 0

Ich

0

T
i 0 i g 0

1 i i

i

0

<sos>



• Compute the output at t=1

– Will be a probability distribution over words 148
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• Draw a word from the output distribution at 

t=1 149
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• Compute the output at t=2

– Will be a probability distribution over words 152
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• Compute the output at t=3

– Will be a probability distribution over words

– Draw a word from the distribution 156
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• Continue the process until an end-of-sequence

symbol is produced 157
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Modification: Query key value

• Encoder outputs an explicit “key” and “value” at each input time

– Key is used to evaluate the importance of the input at that time, for a given output

• Decoder outputs an explicit “query” at each output time

– Query is used to evaluate which inputs to pay attention to

• The weight is a function of key and query

• The actual context is a weighted sum of value 158
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NOTE : Query, Key, Values are generalizations of the input to the attention mechanism.
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Find the attention of each hidden state with every other hidden state in the

sequence O1 O2 O3

Note: Our attention mechanism has no learnable 

parameter if we use dot product attention
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blocks!
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Multiple stacked encoder and decoder blocks!

Layer Normalization!
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Multiple stacked encoder and decoder blocks!

Layer Normalization!

Positional Embeddings!
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