
AI, Deep Learning Fundamentals and
Applications

Dr. Ahmad Aljaafreh,
Professor, Intelligent Systems
Tafila Technical University

OUTLINE

Artificial Intelligence (AI)
A brief introduction

Deep Learning
Introduction, what and why
Applications
Deep learning success

Neural Networks
Perceptron
Neural network models
CNN, RNN, Attention
Transformers

Artificial Intelligence (AI)
A brief introduction

History

Deep Learning is

A Revolution in Artificial

Intelligence
front-page article at the New York Times

14

http://www.nytimes.com/2012/11/24/science/scientists-see-advances-in-deep-learning-a-part-of-artificial-intelligence.html?_r=0

15

Introduction

Deep Learning is a new area of
Machine Learning research,
which has been introduced

with the objective of moving
Machine Learning closer to

one of its original goals

Deep Learning is about
learning multiple levels of

representation and abstraction
that help to make sense of

data such as images, sound,
and text.

Deep Learning

Motivations
for Deep
Architectures

The main
motivations for

studying learning
algorithms for

deep architectures
are the following:

Insufficient depth
can hurt

The brain has a
deep architecture

Cognitive
processes seem

deep

Why Now ?

Until Now…

Deep Learning = Learning Hierarchical Representations

Deep Learning = Learning Hierarchical Representations

Applications of Deep Learning

http://machinelearningmastery.com/inspirational-applications-deep-learning/

http://machinelearningmastery.com/inspirational-applications-deep-learning/

Automatic Colorization of Black
and White Images

Colorful Image Colorization, Zhang et. al. 2016 https://arxiv.org/pdf/1603.08511.pdf

Automatically Adding Sounds To
Silent Movies

The system is trained using 1000 examples of video with sound of a
drum stick striking different surfaces and creating different sounds.
A deep learning model associates the video frames with a database
of pre-rerecorded sounds in order to select a sound to play that
best matches what is happening in the scene.

Demo : https://www.youtube.com/watch?v=0FW99AQmMc8

Visually Indicated Sounds, Owens et. al. 2015, https://arxiv.org/abs/1512.08512

https://www.youtube.com/watch?v=0FW99AQmMc8

Automatic Machine Translation

Given words, phrase or sentence in one language, automatically
translate it into another language. Automatic machine translation has
been around for a long time, but deep learning is achieving top results.
in two specific areas:

Automatic Translation of Text.
Automatic Translation of Images.

Deep Learning Network in Machine Translation, Zhang et.al. 2015,

Object Classification and Detection
in Photographs

Deep Neural Networks for Object Detection, Szegedy et.al. 2013

Automatic Handwriting Generation

Different styles can be learned and then mimicked

Demo : http://www.cs.toronto.edu/~graves/handwriting.html

Generative sequences with recurring neural network, Graves 2014
https://arxiv.org/pdf/1308.0850v5.pdf

http://www.cs.toronto.edu/~graves/handwriting.html

Automatic Text Generation

➢This is an interesting task, where a corpus of text is learned and from this
model new text is generated, word-by-word or character-by-character. The
model is capable of learning how to spell, punctuate, form sentences and even
capture the style of the text in the corpus.
➢Large recurrent neural networks are used to learn the relationship between
items in the sequences of input strings and then generate text.

Generating Sequences With Recurrent NN, Graves, 2014 https://arxiv.org/pdf/1308.0850v5.pdf

Automatic Image Caption
Generation

Explain Images with Multimodal Recurrent Neural Networks, Mao et.al, 2014
Sequence to Sequence, Subhashini et.al, 2015

Neural Networks:

3
6

Neural networks have taken over
AI

• Tasks that are made possible by NNs, aka deep learning

– Tasks that were once assumed to be purely in the human domain of
expertise

3
7

So what are neural networks??

• What are these boxes?

– Functions that take an input and produce an output

– What’s in these functions?

N.Net
Voice
signal Transcription N.Net Text caption

Next move

Image

N.Net
Game
State

3
8

The human perspective

• In a human, those functions are computed by
the brain…

N.Net
Voice
signal Transcription N.NetImage Text caption

N.Net
Game
State Next move

3
9

Recap : NNets and the brain

• In their basic form, NNets mimic the
networked structure in the brain

4
0

Recap : The brain

• The Brain is composed of networks of neurons

4
1

Recap : Nnets and the brain

• Neural nets are composed of networks of
computational models of neurons called perceptrons

4
2

Recap: the perceptron

• A threshold unit

– “Fires” if the weighted sum of inputs exceeds a
threshold

– Electrical engineers will call this a threshold gate

• A basic unit of Boolean circuits

i i

i

x1

x1

x3

xN

4
3

A better figure

• A threshold unit
– “Fires” if the affine function of inputs is positive

• The bias is the negative of the threshold T in the previous
slide

+.
.

1

2

3

i i

i

1

2

3

N

N

4
4

The “soft” perceptron (logistic)

• A “squashing” function instead of a threshold
at the output

– The sigmoid “activation” replaces the threshold

• Activation: The function that acts on the weighted
combination of inputs (and threshold)

+.
.

1

2

3

1

2

3

N

N

i i

i

10

Other “activations”

• Does not always have to be a squashing function

– We will hear more about activations later

• We will continue to assume a “threshold” activation in this lecture

sigmoid tanh

+.
..

x1

x2

x3

xN
𝑏

𝑧

𝑦

𝑤1

𝑤2

𝑤3

𝑤N

tanh(𝑧)1

1 +exp(−𝑧)

log(1 +𝑒z)

11

The multi-layer perceptron

• A network of perceptrons
– Perceptrons “feed” other

perceptrons

– We give you the “formal” definition of a layer later

14

Defining “depth”

• What is a “deep” network

15

Deep Structures
• Layered deep structure

– The input is the “source”,

– The output nodes are “sinks”

• “Deep” Depth greater than 2

• “Depth” of a layer – the depth of the neurons in the layer w.r.t. input

Input: Black
Layer 1: Red
Layer 2: Green
Layer 3: Yellow
Layer 4: Blue

17

The multi-layer perceptron

• Inputs are real or Boolean stimuli

• Outputs are real or Boolean values
– Can have multiple outputs for a single input

• What can this network compute?
– What kinds of input/output relationships can it model?

N.Net

18

MLPs approximate functions

2 1

X Y Z A

• MLPs can compose Boolean functions

• MLPs can compose real-valued functions

• What are the limitations?

0 1

2

2

1
-1 11 1 1 -1

1

2

1

1 -1 1 1

11

x

19

ℎ2

ℎn

20

Today

• Multi-layer Perceptrons as universal Boolean
functions

– The need for depth

• MLPs as universal classifiers

– The need for depth

• MLPs as universal approximators

he realsBooleans over t

x2

x1

• The network must fire if the input is in the coloured area
– The AND compares the sum of the hidden outputs to 5

• NB: What would the pattern be if it compared it to 4?

x1

x2

5

4
4

4

4

4

3

3

3

33 x1x2

i

N

i=1

AND

y1 y2 y3 y4 y5

85

More complex decision boundaries

• Network to fire if the input is in the yellow area

– “OR” two polygons

– A third layer is required

x2

AND AND

OR

x1 x1 x2

86

Complex decision boundaries

• Can compose arbitrarily complex decision

boundaries

87

Complex decision boundaries

AND

OR

x1 x2

• Can compose arbitrarily complex decision

boundaries

88

Complex decision boundaries

AND

OR

x1 x2

• Can compose arbitrarily complex decision boundaries

– With only one hidden layer!

– How?
89

Exercise: compose this with one
hidden layer

• How would you compose the decision

boundary to the left with only one hidden

x1 x2

x2

layer?
90

x1

Depth and the universal classifier

• Deeper networks can require far fewer neurons

x2

x1 x1 x2

105

Deep Neural Networks
Scanning for patterns

(aka convolutional networks)

The model so far

• Can recognize patterns in data

– E.g. digits

– Or any other vector data

input
layer

output layer

Or, more generally
a vector input

A new problem

• Does this signal contain the word “Welcome”?

• Compose an MLP for this problem.

– Assuming all recordings are exactly the same length..
4

Finding a Welcome

• Trivial solution: Train an MLP for the entire
recording

6
3

Finding a Welcome

• Problem with trivial solution: Network that finds a “welcome” in
the top recording will not find it in the lower one

– Unless trained with both

– Will require a very large network and a large amount of training data
to cover every case

6
4

Finding a Welcome

• Need a simple network that will fire regardless

of the location of “Welcome”

– and not fire when there is none
6
5

Flowers

• Is there a flower in any of these images

6
6

A problem

• Will an MLP that recognizes the left image as a flower

also recognize the one on the right as a flower?

input
layer

output layer

9

A problem

• Need a network that will “fire” regardless of

the precise location of the target object

10

The need for shift invariance

• In many problems the location of a pattern is not
important

– Only the presence of the pattern

• Conventional MLPs are sensitive to the location of the
pattern

– Moving it by one component results in an entirely different
input that the MLP won’t recognize

• Requirement: Network must be shift invariant
11

Solution: Scan

• Scan for the target word

– The spectral time-frequency components in a
“window” are input to a “welcome-detector” MLP

12

Solution: Scan

• Scan for the target word

– The spectral time-frequency components in a
“window” are input to a “welcome-detector” MLP

13

Solution: Scan

• Scan for the target word

– The spectral time-frequency components in a
“window” are input to a “welcome-detector” MLP

14

Solution: Scan

• Scan for the target word

– The spectral time-frequency components in a
“window” are input to a “welcome-detector” MLP

15

Solution: Scan

• Scan for the target word

– The spectral time-frequency components in a
“window” are input to a “welcome-detector” MLP

16

Solution: Scan

• Scan for the target word

– The spectral time-frequency components in a
“window” are input to a “welcome-detector” MLP

17

Solution: Scan

• “Does welcome occur in this recording?”
– We have classified many “windows” individually

– “Welcome” may have occurred in any of them

18

Solution: Scan

• “Does welcome occur in this recording?”

– Maximum of all the outputs (Equivalent of Boolean OR)

MAX

19

Solution: Scan

• “Does welcome occur in this recording?”

– Maximum of all the outputs (Equivalent of Boolean OR)

– Or a proper softmax/logistic

• Finding a welcome in adjacent windows makes it more likely that we didn’t find
noise

Perceptron

20

Solution: Scan

• “Does welcome occur in this recording?”

– Maximum of all the outputs (Equivalent of Boolean OR)

– Or a proper softmax/logistic

• Adjacent windows can combine their evidence

– Or even an MLP 21

Its actually just one giant network

• The entire operation can be viewed as one giant network
– With many subnetworks, one per window

– Restriction: All subnets are identical

• The network is shift-invariant!
23

The 2-d analogue: Does this picture
have a flower?

• Scan for the desired object

– “Look” for the target object at each position

Input
(the pixel data)

26

Solution: Scan

Flower detector MLP

27

• Scan for the desired object

• At each location, the entire region is sent

through the MLP

Solution: Scan

Flower detector MLP

28

• Scan for the desired object

• At each location, the entire region is sent

through the MLP

Solution: Scan

Flower detector MLP

29

• Scan for the desired object

• At each location, the entire region is sent

through the MLP

Solution: Scan

Flower detector MLP

30

• Scan for the desired object

• At each location, the entire region is sent

through the MLP

Solution: Scan

Flower detector MLP

31

• Scan for the desired object

• At each location, the entire region is sent

through the MLP

Solution: Scan

Flower detector MLP

32

• Scan for the desired object

• At each location, the entire region is sent

through the MLP

Solution: Scan

Flower detector MLP

33

• Scan for the desired object

• At each location, the entire region is sent

through the MLP

Solution: Scan

Flower detector MLP

34

• Scan for the desired object

• At each location, the entire region is sent

through the MLP

Solution: Scan

Flower detector MLP

35

• Scan for the desired object

• At each location, the entire region is sent

through the MLP

Solution: Scan

Flower detector MLP

36

• Scan for the desired object

• At each location, the entire region is sent

through the MLP

Solution: Scan

Flower detector MLP

37

• Scan for the desired object

• At each location, the entire region is sent

through the MLP

Solution: Scan

Flower detector MLP

38

• Scan for the desired object

• At each location, the entire region is sent

through the MLP

Solution: Scan

Flower detector MLP

39

• Scan for the desired object

• At each location, the entire region is sent

through the MLP

Solution: Scan

Flower detector MLP

40

• Scan for the desired object

• At each location, the entire region is sent

through the MLP

Scanning the picture to find a flower

• Determine if any of the locations had a flower

– We get one classification output per scanned location

• Each dot in the right represents the output of the MLP when it classifies one location in the
input figure

– The score output by the MLP

– Look at the maximum value

• If the picture has a flower, the location with the flower will result in high output value

max

41

Scanning the picture to find a flower

• Determine if any of the locations had a flower
• Each dot in the right represents the output of the MLP when it

classifies one location in the input figure

– The score output by the MLP

– Look at the maximum value

– Or pass it through a softmax or even an MLP
42

Its just a giant network with common
subnets

• The entire operation can be viewed as a single giant network

– Composed of many “subnets” (one per window)

– With one key feature: all subnets are identical

• The network is shift invariant.
44

Scanning: A closer look

• The “input layer” is just the pixels in the image

connecting to the hidden layer

Input layer Hidden layer

Scanning: A closer look

• Scanning: Analyze windows of pixels starting

from top left, until the bottom right of the image

– Produce an output for every window analyzed

– Pass collection of outputs through a softmax

Scanning: A closer look

• Scanning: Analyze windows of pixels starting

from top left, until the bottom right of the image

– Produce an output for every window analyzed

– Pass collection of outputs through a softmax

Scanning: A closer look

• Scanning: Analyze windows of pixels starting

from top left, until the bottom right of the image

– Produce an output for every window analyzed

– Pass collection of outputs through a softmax

Scanning: A closer look

• Scanning: Analyze windows of pixels starting

from top left, until the bottom right of the image

– Produce an output for every window analyzed

– Pass collection of outputs through a softmax

Scanning: A closer look

• Consider a single neuron in the first layer

– At each position of the box, the neuron is evaluating a “window” of the
picture at that location, as part of the classification for that region

ij ij

i , j

Scanning: A closer look

• Consider a single neuron in the first layer

– At each position of the box, the neuron is evaluating a “window” of the
picture at that location, as part of the classification for that region

ij ij

i , j

• Let us compute the output of the first neuron for all the windows in the
picture before computing the rest of the neurons

–

–

“Scanning” the image with just the neuron

We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

• Consider a single neuron in the first layer

– At each position of the box, the neuron is evaluating a “window” of the
picture at that location, as part of the classification for that region

• Let us compute the output of the first neuron for all the windows in the
picture before computing the rest of the neurons

–

–

“Scanning” the image with just the neuron

We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

• Consider a single neuron in the first layer

– At each position of the box, the neuron is evaluating a “window” of the
picture at that location, as part of the classification for that region

• Let us compute the output of the first neuron for all the windows in the
picture before computing the rest of the neurons

–

–

“Scanning” the image with just the neuron

We could arrange the outputs in correspondence to the original picture
130

Scanning: A closer look

• Consider a single neuron in the first layer

– At each position of the box, the neuron is evaluating a “window” of the
picture at that location, as part of the classification for that region

• Let us compute the output of the first neuron for all the windows in the
picture before computing the rest of the neurons

–

–

“Scanning” the image with just the neuron

We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

• Consider a single neuron in the first layer

– At each position of the box, the neuron is evaluating a “window” of the
picture at that location, as part of the classification for that region

• Let us compute the output of the first neuron for all the windows in the
picture before computing the rest of the neurons

–

–

“Scanning” the image with just the neuron

We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

• Consider a single neuron in the first layer

– At each position of the box, the neuron is evaluating a “window” of the
picture at that location, as part of the classification for that region

• Let us compute the output of the first neuron for all the windows in the
picture before computing the rest of the neurons

–

–

“Scanning” the image with just the neuron

We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

• Consider a single neuron in the first layer

– At each position of the box, the neuron is evaluating a “window” of the
picture at that location, as part of the classification for that region

• Let us compute the output of the first neuron for all the windows in the
picture before computing the rest of the neurons

–

–

“Scanning” the image with just the neuron

We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

• Consider a single neuron in the first layer

– At each position of the box, the neuron is evaluating a “window” of the
picture at that location, as part of the classification for that region

• Let us compute the output of the first neuron for all the windows in the
picture before computing the rest of the neurons

–

–

“Scanning” the image with just the neuron

We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

• Consider a single neuron in the first layer

– At each position of the box, the neuron is evaluating a “window” of the
picture at that location, as part of the classification for that region

• Let us compute the output of the first neuron for all the windows in the
picture before computing the rest of the neurons

–

–

“Scanning” the image with just the neuron

We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

• Consider a single neuron in the first layer

– At each position of the box, the neuron is evaluating a “window” of the
picture at that location, as part of the classification for that region

• Let us compute the output of the first neuron for all the windows in the
picture before computing the rest of the neurons

–

–

“Scanning” the image with just the neuron

We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

• Consider a single neuron in the first layer

– At each position of the box, the neuron is evaluating a “window” of the
picture at that location, as part of the classification for that region

• Let us compute the output of the first neuron for all the windows in the
picture before computing the rest of the neurons

–

–

“Scanning” the image with just the neuron

We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

• Consider a single neuron in the first layer

– At each position of the box, the neuron is evaluating a “window” of the
picture at that location, as part of the classification for that region

• Let us compute the output of the first neuron for all the windows in the
picture before computing the rest of the neurons

–

–

“Scanning” the image with just the neuron

We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

• Consider a single neuron in the first layer

– At each position of the box, the neuron is evaluating a “window” of the
picture at that location, as part of the classification for that region

• Let us compute the output of the first neuron for all the windows in the
picture before computing the rest of the neurons

–

–

“Scanning” the image with just the neuron

We could arrange the outputs in correspondence to the original picture
140

Scanning: A closer look

• Consider a single neuron in the first layer

– At each position of the box, the neuron is evaluating a “window” of the
picture at that location, as part of the classification for that region

• Let us compute the output of the first neuron for all the windows in the
picture before computing the rest of the neurons

–

–

“Scanning” the image with just the neuron

We could arrange the outputs in correspondence to the original picture

Scanning: A closer look

• Let us compute the output of the first neuron for all the windows in
the picture before computing the rest of the neurons

• Eventually, we can arrange the outputs from the response at the
scanned positions into a rectangle that’s proportional in size to the
original picture

BR2

Scanning: A closer look

• We can repeat the process for each of the first-layer

neurons

– “Scan” the input with the neuron

– Arrange the neuron’s outputs from the scanned positions

according to their positions in the original image 143

Scanning: A closer look

• To classify a specific “window” in the image,

we send the first level activations from the

positions corresponding to that position to the

next layer 144

Scanning: A closer look

145

• We can recurse the logic

– The second level neurons too can “scan” the rectangular outputs
of the first-level neurons before computing subsequent layers

– (Un)like the first level, they must jointly scan multiple “maps”

• Each location in the output of the second level neuron considers the
corresponding locations from the output maps of all the first-level
neurons

Scanning: A closer look

146

• We can recurse the logic

– The second level neurons too can “scan” the rectangular outputs
of the first-level neurons before computing subsequent layers

– (Un)like the first level, they must jointly scan multiple “maps”

• Each location in the output of the second level neuron considers the
corresponding locations from the output maps of all the first-level
neurons

Scanning: A closer look

147

• We can recurse the logic

– The second level neurons too can “scan” the rectangular outputs
of the first-level neurons before computing subsequent layers

– (Un)like the first level, they must jointly scan multiple “maps”

• Each location in the output of the second level neuron considers the
corresponding locations from the output maps of all the first-level
neurons

Scanning: A closer look

148

• We can recurse the logic

– The second level neurons too can “scan” the rectangular outputs
of the first-level neurons before computing subsequent layers

– (Un)like the first level, they must jointly scan multiple “maps”

• Each location in the output of the second level neuron considers the
corresponding locations from the output maps of all the first-level
neurons

Scanning: A closer look

149

• We can recurse the logic

– The second level neurons too can “scan” the rectangular outputs
of the first-level neurons before computing subsequent layers

– (Un)like the first level, they must jointly scan multiple “maps”

• Each location in the output of the second level neuron considers the
corresponding locations from the output maps of all the first-level
neurons

Scanning: A closer look

150

• We can recurse the logic

– The second level neurons too can “scan” the rectangular outputs
of the first-level neurons before computing subsequent layers

– (Un)like the first level, they must jointly scan multiple “maps”

• Each location in the output of the second level neuron considers the
corresponding locations from the output maps of all the first-level
neurons

Scanning: A closer look

151

• We can recurse the logic

– The second level neurons too can “scan” the rectangular outputs
of the first-level neurons before computing subsequent layers

– (Un)like the first level, they must jointly scan multiple “maps”

• Each location in the output of the second level neuron considers the
corresponding locations from the output maps of all the first-level
neurons

Scanning: A closer look

152

• We can recurse the logic

– The second level neurons too can “scan” the rectangular outputs
of the first-level neurons before computing subsequent layers

– (Un)like the first level, they must jointly scan multiple “maps”

• Each location in the output of the second level neuron considers the
corresponding locations from the output maps of all the first-level
neurons

Scanning: A closer look

• To detect a picture at any location in the

original image, the output layer must consider

the corresponding outputs of the last hidden

layer

Detecting a picture anywhere in the
image?

• Recursing the logic, we can create a map for

the neurons in the next layer as well

– The map is a flower detector for each location of

the original image

Detecting a picture anywhere in the
image?

• To detect a picture at any location in the original
image, only need to consider the corresponding
location of the output map

Detecting a picture anywhere in the
image?

• To detect a picture at any location in the original image,
only need to consider the corresponding location of the
output map

• Actual problem? Is there a flower in the image

– Not “detect the location of a flower”

Detecting a picture anywhere in the
image?

• Is there a flower in the picture?

• The entire output map can be sent into a final

“max” to detect a flower in the full picture

– Or a softmax, or a full MLP…
157

Detecting a picture in the image

• Redrawing the final layer

– “Flatten” the output of the neurons into a single

block, since the arrangement is no longer important

– Pass that through a max/softmax/MLP

The behavior of the layers

• The first layer neurons “look” at the entire “window” to extract window-
level features

– Subsequent layers only perform classification over these window-level features

• The first layer neurons is responsible for evaluating the entire window of
pixels

– Subsequent layers only look at a single pixel in their input maps

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer

– The first layer evaluates smaller blocks of pixels

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer

– The first layer evaluates smaller blocks of pixels

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer

– The first layer evaluates smaller blocks of pixels

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer

– The first layer evaluates smaller blocks of pixels

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer

– The first layer evaluates smaller blocks of pixels

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer

– The first layer evaluates smaller blocks of pixels

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer

– The first layer evaluates smaller blocks of pixels

– The next layer evaluates blocks of outputs from the first layer

Distributing the scan

• We can distribute the pattern matching over two layers and still
achieve the same block analysis at the second layer

– The first layer evaluates smaller blocks of pixels

– The next layer evaluates the windows of outputs from the first layer

– This effectively evaluates the larger window of the original image

180

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer

– The first layer evaluates smaller blocks of pixels

– The next layer evaluates windows of outputs from the first layer

– This effectively evaluates the larger window of the original image
181

Distributing the scan

• The window has been distributed over two layers

• The higher layer implicitly learns the

arrangement of sub patterns that represents the

larger pattern (the flower in this case)
182

Distributing the scan

• If second layer neurons scan the maps output by first-layer
neurons, they effectively scan the input with the full-sized
window

– Jointly scan all the first-layer maps

– Each output of the second-layer neuron represents the output for
one full-sized input window

183

Distributing the scan

• If second layer neurons (jointly) scan the maps output by first-layer neurons, they
effectively scan the input with the full-sized window

– Each output of the second-layer neuron represents the output for one full-sized input window

• To compute the MLP output for a window of input, the output neuron only needs to
consider the corresponding outputs of second-layer maps

Distributing the scan

• If second layer neurons (jointly) scan the maps output by first-layer neurons, they
effectively scan the input with the full-sized window

– Each output of the second-layer neuron represents the output for one full-sized input window

• To compute the MLP output for a window of input, the output neuron only needs to
consider the corresponding outputs of second-layer maps

• The output neuron can compute its outputs for every window in the input from the
values of the second layer maps (and send it to a subsequent softmax)

S
o
f
t
m
a
x

This is still just scanning with a shared
parameter network

• With a minor modification…

This is still just scanning with a shared
parameter network

Each arrow represents an entire set
of weights over the smaller cell

The pattern of weights going out of
any cell is identical to that from any
other cell.

Colors indicate neurons
with shared parameters Layer 1

• The network that analyzes individual blocks is

now itself a shared parameter network..

A different view

Filter applied to kth layer of maps
(convolutive component plus bias)

• ..A stacked arrangement of planes

• We can view the joint processing of the various

maps as processing the stack using a three-

dimensional filter

Stacked arrangement
of kth layer of maps

61

The “cube” view of input maps

bias

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

62

One map

bias

The “cube” view of input maps

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

63

All maps

bias

The “cube” view of input maps

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

64

bias

The “cube” view of input maps

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

65

bias

The “cube” view of input maps

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

66

bias

The “cube” view of input maps

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

67

bias

The “cube” view of input maps

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

68

bias

The “cube” view of input maps

• The computation of the convolutional map at any
location sums the convolutional outputs at all
planes

69

The other component
Downsampling/Pooling

• Convolution (and activation) layers are followed intermittently by
“downsampling with pooling” layers

– Typically (but not always) “max” pooling

– Often, they alternate with convolution, though this is not necessary

Multi-layer
Perceptron

Output

85

Max pooling

• Max pooling selects the largest from a pool of

elements

• Pooling is performed by “scanning” the input

Max

3 1

4 6
Max

6

86

Recall: Max pooling

Max

1 3

6 5
Max

6

87

6

• Max pooling selects the largest from a pool of

elements

• Pooling is performed by “scanning” the input

Recall: Max pooling

Max

3 2

5 7
Max

88

6 6 7

• Max pooling selects the largest from a pool of

elements

• Pooling is performed by “scanning” the input

Recall: Max pooling

Max

• Max pooling selects the largest from a pool of

elements

• Pooling is performed by “scanning” the input

89

Recall: Max pooling

Max

• Max pooling selects the largest from a pool of

elements

• Pooling is performed by “scanning” the input

90

Recall: Max pooling

Max

• Max pooling scans with a stride of 1 confer

jitter-robustness, but do not constitute

downsampling

• Downsampling requires a stride greater than 1
91

Downsampling requires Stride>1

• The “max pooling” operation with “stride”
greater than 1 results in an output smaller than
the input

– One output per stride

– The output is “downsampled”

Max

92

• The “max pooling” operation with “stride”
greater than 1 results in an output smaller than
the input

– One output per stride

– The output is “downsampled”

Max

Downsampling requires Stride>1

93

• The “max pooling” operation with “stride”
greater than 1 results in an output smaller than
the input

– One output per stride

– The output is “downsampled”

Max

Downsampling requires Stride>1

94

• The “max pooling” operation with “stride”
greater than 1 results in an output smaller than
the input

– One output per stride

– The output is “downsampled”

Max

Downsampling requires Stride>1

95

• The “max pooling” operation with “stride”
greater than 1 results in an output smaller than
the input

– One output per stride

– The output is “downsampled”

Max

Downsampling requires Stride>1

96

• The “max pooling” operation with “stride”
greater than 1 results in an output smaller than
the input

– One output per stride

– The output is “downsampled”

Max

Downsampling requires Stride>1

97

• The “max pooling” operation with “stride”
greater than 1 results in an output smaller than
the input

– One output per stride

– The output is “downsampled”

Max

Downsampling requires Stride>1

98

• The “max pooling” operation with “stride”
greater than 1 results in an output smaller than
the input

– One output per stride

– The output is “downsampled”

Max

Downsampling requires Stride>1

99

• The “max pooling” operation with “stride”
greater than 1 results in an output smaller than
the input

– One output per stride

– The output is “downsampled”

Downsampling requires Stride>1

Max

100

Deep Learning

Recurrent Networks

1
7
7

What did I say?

• Speech Recognition

– Analyze a series of spectral vectors, determine what was said

• Note: Inputs are sequences of vectors. Output is a
classification result

“To be” or not “to be”??

1
7
8

What is he talking about?
“Football” or “basketball”?

• Text analysis

– E.g. analyze document, identify topic

• Input series of words, output classification output

– E.g. read English, output French

• Input series of words, output series of words

The Steelers, meanwhile, continue to struggle to make stops on
defense. They've allowed, on average, 30 points a game, and have
shown no signs of improving anytime soon.

1
7
9

Should I invest..
To invest or not to invest?

7/03 8/03 9/03 10/03 11/03 12/03 13/03 14/03 15/03

• Note: Inputs are sequences of vectors. Output may be
scalar or vector

– Should I invest, vs. should I not invest in X?

– Decision must be taken considering how things have fared over
time

st
o

ck
s

10

11

These are classification and
prediction problems

• Consider a sequence of inputs

– Input vectors

• Produce one or more outputs

• This can be done with neural networks

– Obviously

Representational shortcut

• Input at each time is a vector

• Each layer has many neurons

– Output layer too may have many neurons

• But will represent everything by simple boxes

– Each box actually represents an entire layer with many units
12

Representational shortcut

• Input at each time is a vector

• Each layer has many neurons

– Output layer too may have many neurons

But will represent everything by simple boxes

– Each box actually represents an entire layer with many units

•

13

Representational shortcut

• Input at each time is a vector

• Each layer has many neurons

– Output layer too may have many neurons

• But will represent everything as simple boxes

– Each box actually represents an entire layer with many units
14

The stock prediction problem…
To invest or not to invest?

7/03 8/03 9/03 10/03 11/03 12/03 13/03 14/03 15/03

• Stock market

– Must consider the series of stock values in the past

several days to decide if it is wise to invest today

• Ideally consider all of history

st
o

ck
s

15

The stock predictor network

Stock
vector

Time

• The sliding predictor
– Look at the last few days

– This is just a convolutional neural net applied to series data
• Also called a Time-Delay neural network

16

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+3)

The stock predictor network

Stock
vector

Time

• The sliding predictor
– Look at the last few days

– This is just a convolutional neural net applied to series data
• Also called a Time-Delay neural network

17

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+4)

The stock predictor network

Stock
vector

Time

• The sliding predictor
– Look at the last few days

– This is just a convolutional neural net applied to series data
• Also called a Time-Delay neural network

18

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+5)

The stock predictor network

Stock
vector

Time

• The sliding predictor
– Look at the last few days

– This is just a convolutional neural net applied to series data
• Also called a Time-Delay neural network

19

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+6)

The stock predictor network

Stock
vector

Time

• The sliding predictor
– Look at the last few days

– This is just a convolutional neural net applied to series data
• Also called a Time-Delay neural network

20

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+6)

Finite-response model

• This is a finite response system

– Something that happens today only affects the
output of the system for days into the future

• is the width of the system

21

The stock predictor

Stock
vector

X(T-3) X(T-2) X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)

Y(t-1)

Time

• This is a finite response system

– Something that happens today only affects the output of the
system for days into the future

• is the width of the system

22

The stock predictor

Y(T)

Stock
vector

X(T-3) X(T-2)

Time

• This is a finite response system

– Something that happens today only affects the output of the
system for days into the future

• is the width of the system

X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)

23

The stock predictor

Y(T+1)

Stock
vector

X(T-3) X(T-2)

Time

• This is a finite response system

– Something that happens today only affects the output of the
system for days into the future

• is the width of the system

X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)

24

The stock predictor

Stock
vector

X(T-3) X(T-2)

Y(T+2)

Time

• This is a finite response system

– Something that happens today only affects the output of the
system for days into the future

• is the width of the system

X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)

25

The stock predictor

Stock
vector

X(T-3) X(T-2)

Y(T+3)

Time

• This is a finite response system

– Something that happens today only affects the output of the
system for days into the future

• is the width of the system

X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)

26

The stock predictor

Stock
vector

X(T-3) X(T-2)

Y(T+4)

Time

• This is a finite response system

– Something that happens today only affects the output of the
system for days into the future

• is the width of the system

X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)

27

Finite-response model

Time

• Something that happens today only affects the output of the
system for days into the future

– Predictions consider N days of history

• To consider more of the past to make predictions, you must
increase the “history” considered by the system

Stock
vector

X(T-3) X(T-2)

Y(T+3)

28

X(T-1) X(T) X(T+1) X(T+2) X(T+3) X(T+4)

Finite-response

Stock
vector

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Time

• Problem: Increasing the “history” makes the
network more complex

– No worries, we have the CPU and memory

• Or do we?

Y(t+6)

29

Systems often have long-term
dependencies

• Longer-term trends –

– Weekly trends in the market

– Monthly trends in the market

– Annual trends

– Though longer historic tends to affect us less than more
recent events.. 30

We want infinite memory

Time

• Required: Infinite response systems
– What happens today can continue to affect the output

forever
• Possibly with weaker and weaker influence

31

• A NARX net with recursion from the output

Time
X(t)

Y(t) Y

A one-tap NARX network

36

A one-tap NARX network

• A NARX net with recursion from the output

Time

37

X(t)

Y(t)

• A NARX net with recursion from the output

Time
X(t)

Y(t)

A one-tap NARX network

38

• A NARX net with recursion from the output

Time
X(t)

Y(t)

A one-tap NARX network

39

• A NARX net with recursion from the output

Time
X(t)

Y(t)

A one-tap NARX network

40

• A NARX net with recursion from the output

Time
X(t)

Y(t)

A one-tap NARX network

41

• A NARX net with recursion from the output

Time
X(t)

Y(t)

A one-tap NARX network

42

A more complete representation

• A NARX net with recursion from the output

• Showing all computations

• All columns are identical

• An input at t=0 affects outputs forever

Time

43

X(t)

Y(t-1)

Brown boxes show output layers
Yellow boxes are outputs

Same figure redrawn

• A NARX net with recursion from the output

Time

Brown boxes show output layers
All outgoing arrows are the same output

•

•

•

Showing all computations

All columns are identical

An input at t=0 affects outputs forever
44

X(t)

Y(t)

A more generic NARX network

is computed from the

and the current

• The output at time

past outputs

and past inputs

Time

45

X(t)

Y(t)

A “complete” NARX network

• The output at time is computed from all

past outputs and all inputs until time t

– Not really a practical model

Time

46

X(t)

Y(t)

The simple state-space model

• The state (green) at any time is determined by the input at
that time, and the state at the previous time

• An input at t=0 affects outputs forever

• Also known as a recurrent neural net

Y(t)

h (-1)

X(t)

t=0

Time

55

t

t

t

t– 1

An alternate model for infinite response
systems: the state-space model

• is the state of the network

• Need to define initial state

• The state an be arbitrarily complex

56

Single hidden layer RNN

Time

•

•

•

Recurrent neural network

All columns are identical

An input at t=0 affects outputs forever
57

Y(t)

h (-1)

X(t)

t=0

Multiple recurrent layer RNN

Time

•

•

•

Recurrent neural network

All columns are identical

An input at t=0 affects outputs forever
58

Y(t)

h(2) (-1)

h(1)(-1)

X(t)

t=0

Multiple recurrent layer RNN

• We can also have skips..

Time

59

Y(t)

h(2) (-1)

h(1)(-1)

X(t)

t=0

A more complex state

• All columns are identical

• An input at t=0 affects outputs forever

Time

60

X(t)

Y(t)

Or the network may be even more
complicated

• Shades of NARX

• All columns are identical

• An input at t=0 affects outputs forever

Time

61

X(t)

Y(t)

Generalization with other recurrences

• All columns (including incoming edges) are

identical

Time

62

Y(t)

h(2) (-1)

h(1)(-1)

X(t)

t=0

h(2) (-2)

The simplest structures are most
popular

• Recurrent neural network

• All columns are identical

• An input at t=0 affects outputs forever

Time

63

Y(t)

X(t)

t=0

A Recurrent Neural Network

• Simplified models often drawn

• The loops imply recurrence

64

The detailed version of the simplified
representation

Y(t)

h (-1)

X(t)

t=0

65Time

Multiple recurrent layer RNN

Y(t)

h(2) (-1)

h(1)(-1)
X(t)

t=0
66Time

Multiple recurrent layer RNN

Time

Y(t)

X(t)

t=0
67

Equations

• Note superscript in indexing, which indicates layer of
network from which inputs are obtained

• Assuming vector function at output, e.g. softmax

• The state node activation, is typically

2
2 1

j k j
2

k

j

i
1

1
1

j i j

j

i
11 1

j i

j

i
1

1
i

(1)

Recurrent weightsCurrent weights

• Every neuron also has a bias input
68

Equations

3
3 2

j k j
3

k

j

i
2

2
2 1

j i j

j

i
22 2

j i

j

i
2

i
1

• Assuming vector function at output, e.g. softmax

• The state node activations, are typically

i
2

i
1

1
1

j i j

j

i
11 1

j i

j

i
1

(1)

(2)

• Every neuron also has a bias input
69

Variants on recurrent nets

• 1: Conventional MLP
• 2: Sequence generation, e.g. image to caption
• 3: Sequence based prediction or classification, e.g. Speech recognition,

text classification

Images from
Karpathy

71

Variants

• 1: Delayed sequence to sequence, e.g. machine translation

• 2: Sequence to sequence, e.g. stock problem, label prediction

• Etc…

Images from
Karpathy

72

Deep Learning

Sequence to Sequence models:
Attention Models

2
3
0

Sequence-to-sequence modelling

• Problem:

– A sequence 1 N goes in

1 M comes out– A different sequence

• E.g.

– Speech recognition: Speech goes in, a word sequence comes out

• Alternately output may be phoneme or character sequence

– Machine translation: Word sequence goes in, word sequence comes
out

– Dialog : User statement goes in, system response comes out

– Question answering : Question comes in, answer goes out

• In general

– No synchrony between and .

2
3
1

Sequence to sequence

Seq2seq

Seq2seqI ate an apple Ich habe einen apfel gegessen

I ate an apple

• Sequence goes in, sequence comes out

• No notion of “time synchrony” between input and output

– May even not even maintain order of symbols
• E.g. “I ate an apple”→ “Ich habe einen apfel gegessen”

v

– Or even seem related to the input

• E.g. “My screen is blank”→ “Please check if your computer is plugged in.”

2
3
2

2
3
3

Recap: Predicting text

• Simple problem: Given a series of symbols
(characters or words) w1 w2… wn, predict the
next symbol (character or word) wn+1

2
3
4

Language modelling using RNNs

• Problem: Given a sequence of words (or
characters) predict the next one

– The problem of learning the sequential structure
of language

Four score and seven years ???

A B R A H A M L I N C O L ??

Simple recurrence : Text Modelling

• Learn a model that can predict the next symbol
given a sequence of symbols

– Characters or words

• After observing inputs it predicts

– In reality, outputs a probability distribution for

h-1

0 1 2 3 4 5 6

1 2 3 4 5 6 7

2
3
5

Generating Language: The model

• Input: symbols as one-hot vectors

• Dimensionality of the vector is the size of the “vocabulary”

• Projected down to lower-dimensional “embeddings”

• The hidden units are (one or more layers of) LSTM units

• Output at each time: A probability distribution for the next word in the sequence

• All parameters are trained via backpropagation from a lot of text

1 2 3 4 5 6 7 8 9

5 6 7 8 9 102 3 4

2
3
6

Modelling the problem

• Delayed sequence to sequence

22

Modelling the problem

• Delayed sequence to sequence

First process the input
and generate a hidden
representation for it

23

Modelling the problem

• Delayed sequence to sequence

Then use it to generate
an output

25

First process the input
and generate a hidden
representation for it

Modelling the problem

• Problem: Each word that is output depends only on

current hidden state, and not on previous outputs

Then use it to generate
an output

28

First process the input
and generate a hidden
representation for it

Modelling the problem

• Delayed sequence to sequence

– Delayed self-referencing sequence-to-sequence
30

The “simple” translation model

• The input sequence feeds into a recurrent structure

• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

I ate an apple <eos>

31

The “simple” translation model

• The input sequence feeds into a recurrent structure

• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

• Subsequently a second RNN uses the hidden activation as initial state, and
<sos> as initial symbol, to produce a sequence of outputs

– The output at each time becomes the input at the next time

– Output production continues until an <eos> is produced

I ate an

32

apple <eos>

The “simple” translation model

• The input sequence feeds into a recurrent structure

• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

apple <eos> <sos>

• Subsequently a second RNN uses the hidden activation as initial state to
produce a sequence of outputs

–

–

The output at each time becomes the input at the next time

Output production continues until an <eos> is produced
33

Ich

I ate an

The “simple” translation model

• The input sequence feeds into a recurrent structure

• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

Ich habe

• Subsequently a second RNN uses the hidden activation as initial state to
produce a sequence of outputs

–

–

The output at each time becomes the input at the next time

Output production continues until an <eos> is produced
34

Ichapple <eos> <sos>I ate an

The “simple” translation model

• The input sequence feeds into a recurrent structure

• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

apple <eos> <sos>

• Subsequently a second RNN uses the hidden activation as initial state to
produce a sequence of outputs

–

–

The output at each time becomes the input at the next time

Output production continues until an <eos> is produced
35

Ich habe einen

Ich habeI ate an

The “simple” translation model

• The input sequence feeds into a recurrent structure

• The input sequence is terminated by an explicit <eos> symbol

– The hidden activation at the <eos> “stores” all information about the sentence

apple <eos> <sos>

• Subsequently a second RNN uses the hidden activation as initial state to
produce a sequence of outputs

–

–

The output at each time becomes the input at the next time

Output production continues until an <eos> is produced
36

Ich habe einen apfel gegessen <eos>

Ich habe einen apfel gegessenI ate an

The “simple” translation model
Ich habe einen apfel gegessen <eos>

Ich habe einen apfel gegessenI ate an apple <eos> <sos>

Note that drawing a different word here

Would result in a different word being input here, and as a
result the output here and subsequent outputs would all change

37

• We will illustrate with a single hidden layer, but the
discussion generalizes to more layers

I ate an apple <eos> <sos>

Ich

Ich habe einen apfel gegessen <eos>

Ich habe einen

habe einen apfel

apfel gegessen

gegessen <eos>

I ate an

38

apple <eos> <sos> Ich habe einen apfel gegessen

The “simple” translation model

• The recurrent structure that extracts the hidden
representation from the input sequence is the encoder

• The recurrent structure that utilizes this representation
to produce the output sequence is the decoder

ENCODER

DECODER

Ich habe einen apfel gegessen <eos>

Ich habe einen apfel gegessenI ate an apple <eos> <sos>

41

The “simple” translation model

• A more detailed look: The one-hot word
representations may be compressed via embeddings

– Embeddings will be learned along with the rest of the net

– In the following slides we will not represent the projection
matrices

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos> Ich habe einen apfel gegessen

1 1 1 1 1 2 2 2 2 22

42

What the network actually produces

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary

k– 𝑦w = 𝑃 𝑂k = 𝑤|𝑂k– 1,… ,𝑂1 , 𝐼1,… , 𝐼N

– The probability given the entire input sequence 𝐼1,… , 𝐼N and the partial output sequence 𝑂1,… ,𝑂k–1 until 𝑘

• At each time a word is drawn from the output distribution

• The drawn word is provided as input to the next time

𝑦ich
0

𝑦apfel
0

𝑦bier
0

…

𝑦<eos

>
0

I ate an apple <eos><sos>

43

What the network actually produces
Ich

𝑦ich
0

𝑦apfel
0

𝑦bier
0

…

𝑦<eos
0

I ate an

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary

𝑦w–

–

= 𝑃 𝑂k = 𝑤|𝑂k– 1,… ,𝑂1 , 𝐼1,… , 𝐼Nk

The probability given the entire input sequence 𝐼1,… , 𝐼N and the partial output sequence 𝑂1,… ,𝑂k–1 until 𝑘

•

•

At each time a word is drawn from the output distribution

The drawn word is provided as input to the next time
44

apple <eos><sos>

What the network actually produces
Ich

𝑦ich
0

𝑦apfel
0

𝑦bier
0

…

𝑦<eos

>
0

IchI ate an

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary

𝑦w–

–

= 𝑃 𝑂k = 𝑤|𝑂k– 1,… ,𝑂1 , 𝐼1,… , 𝐼Nk

The probability given the entire input sequence 𝐼1,… , 𝐼N and the partial output sequence 𝑂1,… ,𝑂k–1 until 𝑘

•

•

At each time a word is drawn from the output distribution

The drawn word is provided as input to the next time
45

apple <eos><sos>

What the network actually produces
Ich

𝑦ich
0

𝑦a p f e

l
0

𝑦bier
0

…

𝑦<eos

>
0

𝑦ich
1

𝑦apfel
1

𝑦bier
1

…

𝑦<eos

>
1

IchI ate an

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary

𝑦w–

–

= 𝑃 𝑂k = 𝑤|𝑂k– 1,… ,𝑂1 , 𝐼1,… , 𝐼Nk

The probability given the entire input sequence 𝐼1,… , 𝐼N and the partial output sequence 𝑂1,… ,𝑂k–1 until 𝑘

•

•

At each time a word is drawn from the output distribution

The drawn word is provided as input to the next time
46

apple <eos><sos>

What the network actually produces
Ich habe

𝑦ich
0

𝑦a p f e

l
0

𝑦bier
0

…

𝑦<eos

>
0

𝑦ich
1

𝑦apfel
1

𝑦bier
1

…

𝑦<eos

>
1

IchI ate an

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary

𝑦w–

–

= 𝑃 𝑂k = 𝑤|𝑂k– 1,… ,𝑂1 , 𝐼1,… , 𝐼Nk

The probability given the entire input sequence 𝐼1,… , 𝐼N and the partial output sequence 𝑂1,… ,𝑂k–1 until 𝑘

•

•

At each time a word is drawn from the output distribution

The drawn word is provided as input to the next time
47

apple <eos><sos>

What the network actually produces
Ich habe

𝑦ich
0

𝑦a p f e

l
0

𝑦bier
0

…

𝑦<eos

>
0

𝑦ich
1

𝑦a p f e

l
1

𝑦bier
1

…

𝑦<eos

>
1

Ich habeI ate an

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary

𝑦w–

–

= 𝑃 𝑂k = 𝑤|𝑂k– 1,… ,𝑂1 , 𝐼1,… , 𝐼Nk

The probability given the entire input sequence 𝐼1,… , 𝐼N and the partial output sequence 𝑂1,… ,𝑂k–1 until 𝑘

•

•

At each time a word is drawn from the output distribution

The drawn word is provided as input to the next time
48

apple <eos><sos>

What the network actually produces
Ich habe

𝑦ich
0

𝑦a p f e

l
0

𝑦bier
0

…

𝑦<eos

>
0

𝑦ich
1

𝑦a p f e

l
1

𝑦bier
1

…

𝑦<eos

>
1

𝑦ich
2

𝑦apfel
2

𝑦bier
2

…

𝑦<eos

>
2

Ich habeI ate an

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary

𝑦w–

–

= 𝑃 𝑂k = 𝑤|𝑂k– 1,… ,𝑂1 , 𝐼1,… , 𝐼Nk

The probability given the entire input sequence 𝐼1,… , 𝐼N and the partial output sequence 𝑂1,… ,𝑂k–1 until 𝑘

•

•

At each time a word is drawn from the output distribution

The drawn word is provided as input to the next time
49

apple <eos><sos>

What the network actually produces
Ich habe einen

𝑦ich
0

𝑦a p f e

l
0

𝑦bier
0

…

𝑦<eos

>
0

𝑦ich
1

𝑦a p f e

l
1

𝑦bier
1

…

𝑦<eos

>
1

𝑦ich
2

𝑦apfel
2

𝑦bier
2

…

𝑦<eos

>
2

Ich habeI ate an

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary

𝑦w–

–

= 𝑃 𝑂k = 𝑤|𝑂k– 1,… ,𝑂1 , 𝐼1,… , 𝐼Nk

The probability given the entire input sequence 𝐼1,… , 𝐼N and the partial output sequence 𝑂1,… ,𝑂k–1 until 𝑘

•

•

At each time a word is drawn from the output distribution

The drawn word is provided as input to the next time
50

apple <eos><sos>

What the network actually produces
Ich habe einen apfel gegessen <eos>

𝑦ich
0

𝑦a p f e

l
0

𝑦bier
0

…

𝑦<eos

>
0

𝑦ich
1

𝑦a p f e

l
1

𝑦bier
1

…

𝑦<eos

>
1

𝑦ich
2

𝑦apfel
2

𝑦bier
2

…

𝑦<eos

>
2

𝑦ich
3

𝑦apfel
3

𝑦bier
3

…

𝑦<eos

>
3

𝑦ich
4

𝑦apfel
4

𝑦bier
4

…

𝑦<eos

>
4

𝑦ich
5

𝑦apfel
5

𝑦bier
5

…

𝑦<eos

>
5

Ich habe einen apfel gegessenI ate an

• At each time 𝑘 the network actually produces a probability distribution over the output vocabulary

𝑦w–

–

= 𝑃 𝑂k = 𝑤|𝑂k– 1,… ,𝑂1 , 𝐼1,… , 𝐼Nk

The probability given the entire input sequence 𝐼1,… , 𝐼N and the partial output sequence 𝑂1,… ,𝑂k–1 until 𝑘

•

•

At each time a word is drawn from the output distribution

The drawn word is provided as input to the next time
51

apple <eos><sos>

Generating an output from the net

• At each time the network produces a probability distribution over words, given the entire input and
entire output sequence so far

• At each time a word is drawn from the output distribution

• The drawn word is provided as input to the next time

𝑦ich
0

𝑦a p f e

l
0

𝑦bier
0

…

𝑦<eos

>
0

𝑦ich
1

𝑦a p f e

l
1

𝑦bier
1

…

𝑦<eos

>
1

𝑦ich
2

𝑦apfel
2

𝑦bier
2

…

𝑦<eos

>
2

𝑦ich
3

𝑦apfel
3

𝑦bier
3

…

𝑦<eos

>
3

𝑦ich
4

𝑦apfel
4

𝑦bier
4

…

𝑦<eos

>
4

𝑦ich
5

𝑦apfel
5

𝑦bier
5

…

𝑦<eos

>
5

Ich habe einen apfel gegessen <eos>

Ich habe einen apfel gegessenI ate an

• The process continues until an <eos> is generated
52

apple <eos><sos>

The probability of the output

1 L 1 N

1 1…N N 3 1 2 1 N L 1 L– 1 1 N2 1 1

01 02
1 2

N

0 L
L

54

𝑦ich
0

𝑦a p f e

l
0

𝑦bier
0

…

𝑦<eos

>
0

𝑦ich
1

𝑦a p f e

l
1

𝑦bier
1

…

𝑦<eos

>
1

𝑦ich
2

𝑦apfel
2

𝑦bier
2

…

𝑦<eos
2

𝑦ich
3

𝑦apfel
3

𝑦bier
3

…

𝑦<eos

>
3

𝑦ich
4

𝑦apfel
4

𝑦bier
4

…

𝑦<eos

>
4

𝑦ich
5

𝑦apfel
5

𝑦bier
5

…

𝑦<eos

>
5

O1 O2 O3 O4 O5 <eos>

O1 O2 O3 O4 O5I ate an apple <eos><sos>

The probability of the output

• The objective of drawing: Produce the most likely output (that ends in an <eos>)

01,…,0L

in
1 L 1

in
N

01,…,0L

01 02
1 2

0 L
L

55

𝑦ich
0

𝑦a p f e

l
0

𝑦bier
0

…

𝑦<eos

>
0

𝑦ich
1

𝑦a p f e

l
1

𝑦bier
1

…

𝑦<eos
1

𝑦ich
2

𝑦apfel
2

𝑦bier
2

…

𝑦<eos
2

𝑦ich
3

𝑦apfel
3

𝑦bier
3

…

𝑦<eos
3

𝑦ich
4

𝑦apfel
4

𝑦bier
4

…

𝑦<eos
4

𝑦ich
5

𝑦apfel
5

𝑦bier
5

…

𝑦<eos

>
5

O1 O2 O3 O4 O5 <eos>

O1 O2 O3 O4 O5I ate an apple <eos><sos>

Greedy drawing

• So how do we draw words at each time to get the most likely word
sequence?

• Greedy answer – select the most probable word at each time

56

𝑦ich
0

𝑦a p f e

l
0

𝑦bier
0

…

𝑦<eos

>
0

𝑦ich
1

𝑦a p f e

l
1

𝑦bier
1

…

𝑦<eos

>
1

𝑦ich
2

𝑦apfel
2

𝑦bier
2

…

𝑦<eos

>
2

𝑦ich
3

𝑦apfel
3

𝑦bier
3

…

𝑦<eos

>
3

𝑦ich
4

𝑦apfel
4

𝑦bier
4

…

𝑦<eos

>
4

𝑦ich
5

𝑦apfel
5

𝑦bier
5

…

𝑦<eos

>
5

Objective:

01,…,0L

01 02
1 2

0 L
L

O1 O2 O3 O4 O5 <eos>

O1 O2 O3 O4 O5I ate an apple <eos><sos>

Generating Image Captions

• Not really a seq-to-seq problem, more an image-to-sequence problem

• Initial state is produced by a state-of-art CNN-based image classification
system

– Subsequent model is just the decoder end of a seq-to-seq model

• “Show and Tell: A Neural Image Caption Generator”, O. Vinyals, A. Toshev, S. Bengio, D.
Erhan

CNN

Image

97

Generating Image Captions

• Decoding: Given image

– Process it with CNN to get output of classification layer

98

Generating Image Captions

output distribution t 0 1 t– 1

– In practice, we can perform the beam search explained earlier
99

A
a
0

boy
0
c a t
0

<sos>

• Decoding: Given image

– Process it with CNN to get output of classification layer

– Sequentially generate words by drawing from the conditional

Generating Image Captions

output distribution t 0 1 t– 1

– In practice, we can perform the beam search explained earlier
100

A boy
a
0

boy
0
ca t
0

a
1

boy
1
ca t
1

<sos> A

• Decoding: Given image

– Process it with CNN to get output of classification layer

– Sequentially generate words by drawing from the conditional

Generating Image Captions

output distribution t 0 1 t– 1

– In practice, we can perform the beam search explained earlier
101

A boy on
a
0

boy
0
ca t
0

a
1

boy
1
ca t
1

a
2

boy
2

cat
2

<sos> A boy

• Decoding: Given image

– Process it with CNN to get output of classification layer

– Sequentially generate words by drawing from the conditional

Generating Image Captions

output distribution t 0 1 t– 1

– In practice, we can perform the beam search explained earlier
102

A boy on a
a
0

boy
0
ca t
0

a
1

boy
1
ca t
1

a
2

boy
2
ca t
2

a
3

boy
3
ca t
3

<sos> A boy on

• Decoding: Given image

– Process it with CNN to get output of classification layer

– Sequentially generate words by drawing from the conditional

Generating Image Captions

• Decoding: Given image

– Process it with CNN to get output of classification layer

– Sequentially generate words by drawing from the conditional
output distribution t 0 1 t– 1

– In practice, we can perform the beam search explained earlier
103

A boy on a surfboard

a

a
0

boy
0
ca t
0

a
1

boy
1
ca t
1

a
2

boy
2
ca t
2

a
3

boy
3
ca t
3

a
4

boy
4
ca t
4

<sos> A boy on

Generating Image Captions

• Decoding: Given image

– Process it with CNN to get output of classification layer

– Sequentially generate words by drawing from the conditional
output distribution t 0 1 t– 1

– In practice, we can perform the beam search explained earlier
104

A boy on a surfboard<eos>

a surfboard

a
0

boy
0
ca t
0

a
1

boy
1
ca t
1

a
2

boy
2
ca t
2

a
3

boy
3
ca t
3

a
4

boy
4
ca t
4

a
5

boy
5
c a t
5

<sos> A boy on

Examples from Vinyals et al.

108

Variants
Ich habe einen apfel gegessen <eos>

109
<sos>

an ate I<eos> apple

<sos>

A better model: Encoded
input embedding is input to
all output timesteps

A boy on a surfboard

A boy on a surfboard <eos>

A problem with this framework

I ate an apple <eos>

• In reality: All hidden values carry information

– Some of which may be diluted by the time we get to the final state of the
encoder

114

A problem with this framework

• In reality: All hidden values carry information

– Some of which may be diluted by the time we get to the final state of the
encoder

• Every output is related to the input directly

– Not sufficient to have the encoder hidden state to only the initial state of the
decoder

– Misses the direct relation of the outputs to the inputs

einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos> Ich habe

115

Using all input hidden states
Ich habe einen apfel gegessen <eos>

• Simple solution: Compute the average of all encoder hidden states

• Input this average to every stage of the decoder

• The initial decoder hidden state is now separate from the encoder

– And may be a learnable parameter

Ich habe einen apfel gegessen

I ate an apple <eos>

<sos>

1
Average =

N i
N
i

116

Using all input hidden states
Ich habe einen apfel gegessen <eos>

• Problem: The average applies the same weight to every input

• It supplies the same average to every output word

• In practice, different outputs may be related to different inputs

– E.g. “Ich” is most related to “I”, and “habe” and “gegessen” are both
most related to “ate”

Ich habe einen apfel gegessen

I ate an apple <eos>

<sos>

1
Average =

N i
N
i

117

5420 1 3

Using all input hidden states

• Solution: Use a different weighted average for each output word

– The weighted average provided for the kth output word is:

N

t i i

i

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos> Ich habe einen apfel gegessen

118

0

Using all input hidden states

• Solution: Use a different weighted average for each output word

– The weighted average provided for the kth output word is:

N

Ich

I ate an apple <eos> <sos>

0 1 2 3– 1 4

0 i i

i

119

0

1

Using all input hidden states

• Solution: Use a different weighted average for each output word

– The weighted average provided for the kth output word is:

N

Ich habe

I ate an apple <eos> <sos> Ich

0 1 2 3– 1 4

1 i i

i

120

1
0

2

Using all input hidden states

• Solution: Use a different weighted average for each output word

– The weighted average provided for the kth output word is:

N

Ich habe einen

I ate an apple <eos> <sos> Ich habe

0 1 2 3– 1 4

2 i i

i

121

21
0

3

Using all input hidden states

• Solution: Use a different weighted average for each output word

– The weighted average provided for the kth output word is:

N

Ich habe einen apfel

I ate an apple <eos> <sos> Ich habe einen

0 1 2 3– 1 4

3 i i

i

122

321
0

4

Using all input hidden states

• Solution: Use a different weighted average for each output word

– The weighted average provided for the kth output word is:

N

Ich habe einen apfel gegessen

I ate an apple <eos> <sos> Ich habe einen apfel

0 1 2 3– 1 4

4 i i

i

123

4

0

5

Using all input hidden states

• Solution: Use a different weighted average for each output word

– The weighted average provided for the kth output word is:

N

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos> Ich habe einen apfel gegessen

0 1 2 3– 1 4

321

5 i i

i

124

4 50 1 2 3

Using all input hidden states

t

N

• This solution will work if the weights
right input word

i i

i

ki can somehow be made to “focus” on the

– E.g., when predicting the word “apfel”, 𝑤3(4), the weight for “apple” must be high while the
rest must be low

• How do we generate such weights?? 125

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

I ate an apple <eos> <sos>

0 1 2 3– 1 4

20 1 3

Attention Models

t i i

N

i

i• Attention weights: The weights are dynamically computed as functions of
decoder state

– Expectation: if the model is well-trained, this will automatically “highlight” the correct input

• But how are these computed?

Ich habe einen apfel gegessen

Ich habe einen apfel

4 5

gegessen <eos>

I ate an apple <eos> <sos>

0 1 2 3– 1 4

–1 0 1 2 3 4 5

126

3

Attention weights at time

i at time

)• The primary information is t–1 (the state at time time

– Also, the input at time , but generally not used for simplicity

i i t–1

Ich habe einen

I ate an

• The weights
at time

apple <eos> <sos> Ich habe einen

must be computed from available information

0 1 2 3– 1 4

–1 0 1 2

127

3

Requirement on attention weights

i

– I.e. be a distribution

– Ideally, they must be high for the most relevant inputs for the ith output and low elsewhere

einen

Ich habe einen

I ate an

• The weights must be positive and sum to 1.0

apple <eos>
<sos> Ich habe

0 1 2 3– 1 4

–1 0 1 2

𝑤i 𝑡 : Sum to 1.0

i i i

128

N

i

3

Requirement on attention weights

i

– I.e. be a distribution

– Ideally, they must be high for the most relevant inputs for the ith output and low elsewhere

• Solution: A two step weight computation

– First compute raw weights (which could be +ve or –ve)

– Then softmax them to convert them to a distribution 129

einen

Ich habe einen

I ate an

• The weights must be positive and sum to 1.0

apple <eos>
<sos> Ich habe

0 1 2 3– 1 4

–1 0 1 2

𝑤i 𝑡 : Sum to 1.0

i i i

N

i

i
i

jj

i i t– 1

0

1

Using all input hidden states

Ich

I ate an apple <eos>

<sos> Ich

0 1 2 3– 1 4

–1 0

Ni i 0

i 1 i i
i

ijj

133

1
0

2

Using all input hidden states

Ich habe

Ich habe

I ate an apple <eos>

<sos>

0 1 2 3– 1 4

–1 0 1

Ni i 1

i 2 i i
i

ijj

134

21
0

3

Using all input hidden states

Ich habe einen

Ich habe einen

<sos>

I ate an apple <eos>

0 1 2 3– 1 4

– 1 0 1 2

Ni i 2

i 3 i i
i

ijj

135

321
0

4

Using all input hidden states

Ich habe einen apfel

Ich habe einen apfel

<sos>

I ate an apple <eos>

0 1 2 3– 1 4

– 1 0 1 2 3

Ni i 3

i 4 i i
i

ijj

136

4

0

5

Using all input hidden states

Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

<sos>

321

I ate an apple <eos>

0 1 2 3– 1 4

– 1 0 1 2 3 4

Ni i 4

i 5 i i
i

ijj

137

• “Raw” weight at any time: A function
two hidden states

• Actual weight: softmax over raw weights

that works on the

138

I ate an apple <eos>

0 1 2 3 4–1

–1 0 1 2 3 4 5

Input to hidden decoder
layer: i i i

Ich habe einen

Summarizing the computation
Ich habe einen

Sum to 1.0

<sos>

• Typical options for …

– Variables in red are to be learned 139

I ate an apple <eos>

0 1 2 3 4–1

–1 0 1 2 3 4 5

Ich habe einen

Attention models
Ich habe einen

T
i t–1 i t–1

T
i t–1 i g t–1

i t– 1
T
g g

i

t– 1

i t– 1 i t– 1

<sos>

Converting an input (forward pass)

• Pass the input through the encoder to

produce hidden representations 140

I ate an apple <eos>

0 1 2 3 4–1

• Initialize decoder hidden state

141

I ate an apple <eos>

0 1 2 3 4–1

–1

Converting an input (forward pass)

What is this?
Multiple options

Simplest: – 1

Alternative: learn – 1

Alternative 2: – 1 N

If and are different sizes:

–1 s N

s is learnable parameter

• Compute weights (for every

output

) for first

142

I ate an apple <eos>

0 1 2 3 4–1

–1

Converting an input (forward pass)

i – 1
T
i g –1

• Compute weights (for every) for first output

• Compute weighted combination of hidden values143

I ate an apple <eos>

0 1 2 3 4–1

–1

Converting an input (forward pass)

0 i i

i

i – 1
T
i g –1

<sos>

• Produce the first output

– Will be distribution over words 144

I ate an apple <eos>

0 1 2 3 4– 1

– 1 0

Converting an input (forward pass)

0 i i

i

ich
0

du
0
h a t
0

0

0

<sos>

• Produce the first output

– Will be distribution over words

– Draw a word from the distribution 145

I ate an apple <eos>

0 1 2 3 4– 1

– 1 0

Ich

Converting an input (forward pass)

0 i i

i

ich
0

du
0
h a t
0

0

0

• Compute the weights for all instances for

time = 1 146

I ate an apple <eos>

0 1 2 3 4–1

–1 0

Ich

0

T
i 0 i g 0

0

<sos>

• Compute the weighted sum of hidden input

values at t=1 147

I ate an apple <eos>

0 1 2 3 4–1

–1 0

Ich

0

T
i 0 i g 0

1 i i

i

0

<sos>

• Compute the output at t=1

– Will be a probability distribution over words 148

I ate an apple <eos>

0 1 2 3 4– 1

– 1 0

0

Ich

1 i i

i

1

ich
1

du
1
h a t
1

1

1

0

<sos> Ich

• Draw a word from the output distribution at

t=1 149

I ate an apple <eos>

0 1 2 3 4– 1

– 1 0

0

Ich

1 i i

i

1

1
habe

ich
1

du
1
h a t
1

1

0

<sos> Ich

150

I ate an apple <eos>

0 1 2 3 4–1

–1 0

0

Ich

1

1

habe

1

• Compute the weights for all instances for

time = 2

T
i 1 i g 1

0

<sos> Ich

151

I ate an apple <eos>

0 1 2 3 4–1

–1 0

0

Ich

1

1

habe

1
T

i 1 i g 1

• Compute the weighted sum of hidden input

values at t=2

2 i i

i

0

<sos> Ich

• Compute the output at t=2

– Will be a probability distribution over words 152

I ate an apple <eos>

0 1 2 3 4– 1

– 1 0

0

Ich

2 i i

i

1

ich
2

du
2
h a t
2

1

2

1

2

habe

2

habe

0

<sos> Ich

• Draw a word from the distribution

153

I ate an apple <eos>

0 1 2 3 4– 1

– 1 0

0

Ich

2 i i

i

1

1

1

2

habe

2

habe

einen

ich
2

du
2
h a t
2

2

0

<sos> Ich

154

I ate an apple <eos>

0 1 2 3 4–1

–1 0

0

Ich

1

1

habe

1

• Compute the weights for all instances for

time = 3

2

2

einen

2

habe

0

<sos> Ich

155

I ate an apple <eos>

0 1 2 3 4–1

–1

• Compute the weighted sum of hidden input

values at t=3

3 i i

i

0

0

Ich

1

1

habe

1

2

2

einen

2

habe

0

<sos> Ich

• Compute the output at t=3

– Will be a probability distribution over words

– Draw a word from the distribution 156

I ate an apple <eos>

0 1 2 3 4– 1

– 1 0

0

Ich

3 i i

i

1

ich
2

du
2
h a t
2

1

3

1

2

habe

2

habe einen

2

3

einen

3
apfel

0

<sos> Ich

• Continue the process until an end-of-sequence

symbol is produced 157

I ate an apple <eos>

0 1 2 3 4–1

–1 0

0

Ich

1

1

1

2

habe

2

3

habe einen

4

apfel

5

gegessen

einen apfel gegessen <eos>

2 3 4 5

3 4 5

0

<sos> Ich

Modification: Query key value

• Encoder outputs an explicit “key” and “value” at each input time

– Key is used to evaluate the importance of the input at that time, for a given output

• Decoder outputs an explicit “query” at each output time

– Query is used to evaluate which inputs to pay attention to

• The weight is a function of key and query

• The actual context is a weighted sum of value 158

–1 1

Ich

Ich habe

<sos>

0

0 1 2

I ate an apple <eos>

𝒉0 𝒉1 𝒉2 𝒉3 𝒉4𝒉–1

𝑣0𝑘0 𝑣1𝑘1 𝑣2𝑘2 𝑣3𝑘3 𝑣4𝑘4

i i t

i i

Input to hidden decoder
layer: i i i

TRANSFORMERS

•

•

•

•

•

Introduction to Transformers

Transformers Background

The Attention Mechanism

The Transformer Architecture

GPT and BERT

CONTENT

Original Transformers Paper :

Attention Is All You Need

June 12, 2017

INTRODUCTION TO TRANSFORMERS

June 12, 2017 June 11, 2018

Original Transformers Paper :

Attention Is All You Need

First GPT paper by OpenAI:

Improving Language Understanding

by Generative Pre-Training

INTRODUCTION TO TRANSFORMERS

June 12, 2017 June 11, 2018

Original Transformers Paper :

Attention Is All You Need

First GPT paper by OpenAI:

Improving Language Understanding

by Generative Pre-Training

INTRODUCTION TO TRANSFORMERS

June 12, 2017 June 11, 2018 Oct 11, 2018

Original Transformers Paper :

Attention Is All You Need

First GPT paper by OpenAI:

Improving Language Understanding

by Generative Pre-Training

First BERT paper by Google:

Pre-Training Deep Bidirectional Transformers

for Language Understanding

INTRODUCTION TO TRANSFORMERS

June 12, 2017 June 11, 2018 Oct 11, 2018

Original Transformers Paper :

Attention Is All You Need

First GPT paper by OpenAI:

Improving Language Understanding

by Generative Pre-Training

First BERT paper by Google:

Pre-Training Deep Bidirectional Transformers

for Language Understanding

INTRODUCTION TO TRANSFORMERS

TRANSFORMERS :
BACKGROUND

•

•

•

Word Embeddings

Encoder Decoder Models

Attention

TRANSFORMERS : BACKGROUND

• Word Embeddings

•

•

Encoder Decoder Models

Attention

TRANSFORMERS : BACKGROUND

• Word Embeddings

TRANSFORMERS : BACKGROUND

Representing words in the form of vectors

that incorporate information such as word meaning and

context.

• Word Embeddings

TRANSFORMERS : BACKGROUND

Representing words in the form of vectors

that incorporate information such as word meaning and

context.

man

human

rock

• Word Embeddings

TRANSFORMERS : BACKGROUND

Representing words in the form of vectors

that incorporate information such as word meaning and

context.

man

human

rock

Model

(word2vec, elmo)

• Word Embeddings

• Encoder Decoder Models

• Attention

TRANSFORMERS : BACKGROUND

• Encoder Decoder Models

Formalizes tasks into two steps -

maps the input into an encoded representation used by the decoder to generate

output

TRANSFORMERS : BACKGROUND

• Encoder Decoder Models

Formalizes tasks into two steps -

maps the input into an encoded representation used by the decoder to generate

output

TRANSFORMERS : BACKGROUND

ENCODER

• Encoder Decoder Models

Formalizes tasks into two steps -

maps the input into an encoded representation used by the decoder to generate

output

TRANSFORMERS : BACKGROUND

ENCODER

DECODER

• Encoder Decoder Models

Formalizes tasks into two steps -

maps the input into an encoded representation used by the decoder to generate

output

TRANSFORMERS : BACKGROUND

ENCODER

DECODER

See any problems here?

•

•

Word Embeddings

Encoder Decoder Models

• Attention

TRANSFORMERS : BACKGROUND

• Attention Mechanism

A method of dynamically giving weight (attention) to different parts of the input to make a decision.

TRANSFORMERS : BACKGROUND

• Attention Mechanism

A method of dynamically giving weight (attention) to different parts of the input to make a decision.

TRANSFORMERS : BACKGROUND

ENCODER

• Attention Mechanism

A method of dynamically giving weight (attention) to different parts of the input to make a decision.

TRANSFORMERS : BACKGROUND

ATTENTION

• Attention Mechanism

A method of dynamically giving weight (attention) to different parts of the input to make a decision.

TRANSFORMERS : BACKGROUND

ENCODER

ATTENTION

DECODER

• Attention Mechanism

A method of dynamically giving weight (attention) to different parts of the input to make a decision.

TRANSFORMERS : BACKGROUND

ENCODER

ATTENTION

DECODER

TRANSFORMERS :
THE ATTENTION MECHANISM

•

•

•

Attention

Self-Attention

Multi-Head Attention

THE ATTENTION
MECHANISM

• Attention

•

•

Self-Attention

Multi-Head Attention

THE ATTENTION
MECHANISM

THE ATTENTION
MECHANISM
• Attention

ENCODER

ATTENTION

DECODER

THE ATTENTION
MECHANISM
• Attention

ATTENTION

THE ATTENTION
MECHANISM
• Attention

ATTENTION

h1 h2 h3

What is the other input to the attention module

at the beginning of generation?

THE ATTENTION
MECHANISM
• Attention

ATTENTION

h1 h2 h3

h3

At t = 0,

First time step of generation

THE ATTENTION
MECHANISM
• Attention

ATTENTION

h1 h2 h3

h3

At t = 0,

First time step of generation

THE ATTENTION
MECHANISM
• Attention : Set Up

h1 h2 h3

h3

At t = 0,

First time step of generation

THE ATTENTION
MECHANISM

h1 h2 h3

q

QUERY

KEYS

k1 k2 k3

• Attention : Set Up

h3

At t = 0,

First time step of generation

THE ATTENTION
MECHANISM

h1 h2 h3

q

QUERY

KEYS

k1 k2 k3

h3

• Calculating Attention

At t = 0,

First time step of generation

THE ATTENTION
MECHANISM

h1 h2 h3

q

QUERY

KEYS

k1 k2 k3

h3

• Calculating Attention
STEP -1 : CALCULATE A SIMILARITY MEASURE

BETWEEN QUERY AND EACH KEY

ei(t) = g(q(t), ki)

THE ATTENTION
MECHANISM

h1 h2 h3

q

QUERY

KEYS

k1 k2 k3

h3

• Calculating Attention
STEP -1 : CALCULATE A SIMILARITY MEASURE

BETWEEN QUERY AND EACH KEY

ei(t) = g(q(t), ki)

Examples:

g(q, ki) = qTki

THE ATTENTION
MECHANISM

h1 h2 h3

q

QUERY

KEYS

k1 k2 k3

h3

• Calculating Attention
STEP -1 : CALCULATE A SIMILARITY MEASURE

BETWEEN QUERY AND EACH KEY

ei(t) = g(q(t), ki)

Examples:

g(q, ki) = qTki

g(q, ki) = qT W ki

THE ATTENTION
MECHANISM

h1 h2 h3

q

QUERY

KEYS

k1 k2 k3

h3

• Calculating Attention
STEP -1 : CALCULATE A SIMILARITY MEASURE

BETWEEN QUERY AND EACH KEY

ei(t) = g(q(t), ki)

STEP -2 : TAKE SOFTMAX OVER RAW WEIGHTS

wi(t) =exp(ei(q(t), ki))

∑j exp(ej(q(t), kj))

THE ATTENTION
MECHANISM

h1 h2 h3

KEYS

k1 k2 k3

h3

v1 v2 v3 q

QUERY

• Calculating Attention
STEP -1 : CALCULATE A SIMILARITY MEASURE

BETWEEN QUERY AND EACH KEY

ei(t) = g(q(t), ki)

STEP -2 : TAKE SOFTMAX OVER RAW WEIGHTS

wi(t) =exp(ei(q(t), ki))

∑j exp(ej(q(t), kj))

STEP -3 : TAKE A LINEAR COMBINATION

iO(k,q(t),v) = ∑wi(t) vi

VALUES

THE ATTENTION
MECHANISM
• Attention

ATTENTION

h1 h2 h3

h3

NOTE : Query, Key, Values are generalizations of the input to the attention mechanism.

O(k,q(t),v) = ∑iwi(t) vi

• Attention

• Self-Attention

• Multi-Head Attention

THE ATTENTION
MECHANISM

THE ATTENTION
MECHANISM
• Self-Attention

THE ATTENTION
MECHANISM
• Self-Attention

ENCODER

ATTENTION

DECODER

THE ATTENTION
MECHANISM
• Self-Attention

THE ATTENTION
MECHANISM
• Self-Attention

Find the attention of each hidden state with every other hidden state in the

sequence

h1 h2 h3

THE ATTENTION
MECHANISM
• Self-Attention

Find the attention of each hidden state with every other hidden state in the

sequence

h1

KEYS

h2 h3

k1 k2 k3

THE ATTENTION
MECHANISM
• Self-Attention

Find the attention of each hidden state with every other hidden state in the

sequence

h1

KEYS

h2 h3

k1 k2 k3

QUERY

q1

h1
VALUES

v2v1 v3

THE ATTENTION
MECHANISM
• Self-Attention

Find the attention of each hidden state with every other hidden state in the

sequence

h1 h2 h3

k2

KEYS

k1 k3

QUERY

q1

h1
O1 (ki, q1) = ∑wi viVALUES

v2v1 v3

exp(ei(q(t), ki))

j
∑ exp(ej(q(t), kj))

wi(t) =

THE ATTENTION
MECHANISM

h1 h2 h3

k1 k2

KEYS

k3

QUERY

q1

h1

v1

VALUES

v2 v3

• Self-Attention

Find the attention of each hidden state with every other hidden state in the

sequence

O1

O1 (ki, q1) = ∑wi vi

exp(ei(q(t), ki))

j
∑ exp(ej(q(t), kj))

wi(t) =

THE ATTENTION
MECHANISM

h1 h2 h3

k1 k2

KEYS

k3

QUERY

q2

h2

v1

VALUES

v2 v3

• Self-Attention

Find the attention of each hidden state with every other hidden state in the sequence

O1 O2

O2 (ki, q2) = ∑wi vi

exp(ei(q(t), ki))

j
∑ exp(ej(q(t), kj))

wi(t) =

THE ATTENTION
MECHANISM

h1 h2 h3

k1 k2

KEYS

k3

QUERY

q3

h3

v1

VALUES

v2 v3

• Self-Attention

Find the attention of each hidden state with every other hidden state in the sequence

O1 O2 O3

O3 (ki, q3) = ∑wi vi

exp(ei(q(t), ki))

j
∑ exp(ej(q(t), kj))

wi(t) =

THE ATTENTION
MECHANISM

ENCODER

SELF-ATTENTION BLOCK

• Self-Attention

Find the attention of each hidden state with every other hidden state in the

sequence O1 O2 O3

THE ATTENTION
MECHANISM

ENCODER

SELF-ATTENTION BLOCK

• Self-Attention

Find the attention of each hidden state with every other hidden state in the

sequence O1 O2 O3

Note: Our attention mechanism has no learnable

parameter if we use dot product attention

THE ATTENTION
MECHANISM
• Self-Attention

SELF-ATTENTION BLOCK

O1 O2 O3

h1 h2 h3

ENCODER BLOCK

THE ATTENTION
MECHANISM
• Self-Attention

O1 O2 O3

h1 h2 h3

What does self attention do here?

ENCODER BLOCK

SELF-ATTENTION BLOCK

THE ATTENTION
MECHANISM
• Self-Attention

O1 O2 O3

h1 h2 h3

What does self attention do here?

ENCODER BLOCK

w1 w2 w3

SELF-ATTENTION BLOCK

THE ATTENTION
MECHANISM
• Self-Attention

O1 O2 O3

What does self attention do here?

LSTMh
1
(w

1
)

h1 h2 h3

SELF-ATTENTION BLOCK

ENCODER BLOCK

w1 w2 w3

THE ATTENTION
MECHANISM
• Self-Attention

O1 O2 O3

What does self attention do here?

LSTMh
2
(h

1, w
2
)h

1
(w

1
)

h1 h2 h3

SELF-ATTENTION BLOCK

ENCODER BLOCK

w1 w2 w3

THE ATTENTION
MECHANISM
• Self-Attention

O1 O2 O3

What does self attention do here?

LSTMh
2
(w

1, w
2
)h

1
(w

1
)

h1 h2 h3

SELF-ATTENTION BLOCK

ENCODER BLOCK

w1 w2 w3

THE ATTENTION
MECHANISM
• Self-Attention

O1 O2 O3

h
3
(h

2,
w

3
)

What does self attention do here?

LSTMh
2
(w

1, w
2
)h

1
(w

1
)

h1 h2 h3

SELF-ATTENTION BLOCK

ENCODER BLOCK

w1 w2 w3

THE ATTENTION
MECHANISM
• Self-Attention

O1 O2 O3

h
3
(w

1, w
2, w

3
)

What does self attention do here?

LSTMh
2
(w

1, w
2
)h

1
(w

1
)

h1 h2 h3

SELF-ATTENTION BLOCK

ENCODER BLOCK

w1 w2 w3

THE ATTENTION
MECHANISM
• Self-Attention

O1 O2 O3

h
3
(w

1, w
2, w

3
)

What does self attention do here?

LSTMh
2
(w

1, w
2
)h

1
(w

1
)

h1 h2 h3

O
1
(h

1,h2, h
3
) O

2
(h

1, h
2, h

3
) O

3
(h

1, h
2, h

3
)

SELF-ATTENTION BLOCK

ENCODER BLOCK

w1 w2 w3

THE ATTENTION
MECHANISM
• Self-Attention

O1 O2 O3

h
3
(w

1, w
2, w

3
)

What does self attention do here?

LSTMh
2
(w

1, w
2
)h

1
(w

1
)

h1 h2 h3

O
1
(w

1, w
2, w

3
) O

2
(w

1, w
2, w

3
) O

3
(w

1, w
2, w

3
)

SELF-ATTENTION BLOCK

ENCODER BLOCK

w1 w2 w3

THE ATTENTION
MECHANISM
• Self-Attention

O1 O2 O3

h
3
(w

1, w
2, w

3
)

LSTMh
2
(w

1, w
2
)h

1
(w

1
)

h1 h2 h3

O
1
(w

1, w
2, w

3
) O

2
(w

1, w
2, w

3
) O

3
(w

1, w
2, w

3
)

Do we really need the LSTM to model sequences?

SELF-ATTENTION BLOCK

ENCODER BLOCK

w1 w2 w3

THE ATTENTION
MECHANISM
• Self-Attention

O1 O2 O3

h
3
(w

3
)

FEED FORWARDh
2
(w

2
)h

1
(w

1
)

h1 h2 h3

Do we really need the LSTM to model sequences?

SELF-ATTENTION BLOCK

ENCODER BLOCK

w1 w2 w3

THE ATTENTION
MECHANISM
• Self-Attention

O1 O2 O3

FEED FORWARD

h1 h2 h3

Do we really need the LSTM to model sequences?
O

1
(h

1,h2, h
3
) O

2
(h

1, h
2, h

3
) O

3
(h

1, h
2, h

3
)

SELF-ATTENTION BLOCK

ENCODER BLOCK

w1 w2 w3

h
3
(w

3
)h

2
(w

2
)h

1
(w

1
)

THE ATTENTION
MECHANISM
• Self-Attention

O1 O2 O3

FEED FORWARD

h1 h2 h3

Do we really need the LSTM to model sequences?
O

1
(w

1, w
2, w

3
) O

2
(w

1, w
2, w

3
) O

3
(w

1, w
2, w

3
)

SELF-ATTENTION BLOCK

ENCODER BLOCK

w1 w2 w3

h
3
(w

3
)h

2
(w

2
)h

1
(w

1
)

THE ATTENTION
MECHANISM
• Self-Attention

O1 O2 O3

FEED FORWARD

h1 h2 h3

Do we really need the LSTM to model sequences?

NO!

O
1
(w

1, w
2, w

3
) O

2
(w

1, w
2, w

3
) O

3
(w

1, w
2, w

3
)

SELF-ATTENTION BLOCK

ENCODER BLOCK

w1 w2 w3

h
3
(w

3
)h

2
(w

2
)h

1
(w

1
)

THE ATTENTION
MECHANISM
• Self-Attention

O1 O2 O3

FEED FORWARD

h1 h2 h3

Do we really need the LSTM to model sequences?

NO!

O
1
(w

1, w
2, w

3
) O

2
(w

1, w
2, w

3
) O

3
(w

1, w
2, w

3
)

ATTENTION IS ALL YOU NEED!
SELF-ATTENTION BLOCK

ENCODER BLOCK

w1 w2 w3

h
3
(w

3
)h

2
(w

2
)h

1
(w

1
)

•

•

Attention

Self-Attention

• Multi-Head Attention

THE ATTENTION
MECHANISM

THE ATTENTION
MECHANISM

h1 h2 h3

NOTE : Query, Key, Values are generalizations of the input to the attention mechanism.

• Multi-Head Attention

THE ATTENTION
MECHANISM

h1

KEYS

h2 h3

k1 = Wkh1 k2 = Wkh2 k3 = Wkh3

Wk =: To convert input sequence to keys

NOTE : Query, Key, Values are generalizations of the input to the attention mechanism.

• Multi-Head Attention

THE ATTENTION
MECHANISM

VALUES

v1 = Wvh1 v2 = Wvh2
v3 =

Wvh3

h1 h2 h3

KEYS

k1 = Wkh1 k2 = Wkh2 k3 = Wkh3

Wk =: To convert input sequence to keys

Wv =: To convert input sequence to values

NOTE : Query, Key, Values are generalizations of the input to the attention mechanism.

• Multi-Head Attention

THE ATTENTION
MECHANISM

NOTE : Query, Key, Values are generalizations of the input to the attention mechanism.

VALUES

h1 h2 h3

Wk =: To convert input sequence to keys

Wv =: To convert input sequence to values

Wq=: To convert input sequence to values

k1 = Wkh1 k2 = Wkh2

KEYS

k3 = Wkh3

v1 = Wvh1 v2 = Wvh2 v3 = Wvh3

q1 = Wqh1

h1 h2

q2 = Wqh2

QUERIES

q3 = Wqh3

h3

• Multi-Head Attention

THE ATTENTION
MECHANISM• Multi-Head Attention

Wk
Wv

Wq

h1 h2

h3

(k1 , k2 , k3)
(v1 , v2 , v3) (q1 , q2 , q3)

SELF-ATTENTION BLOCK

O1 O2 O3

THE ATTENTION
MECHANISM• Multi-Head Attention

Wk
Wv

Wq

h1 h2

h3

(k1 , k2 , k3)
(v1 , v2 , v3) (q1 , q2 , q3)

SELF-ATTENTION BLOCK

O1 O2 O3

SINGLE ATTENTION HEAD:

H (Wk, Wv, Wq)

THE ATTENTION
MECHANISM• Multi-Head Attention

h1 h2 h3

O1 O2 O3

SINGLE ATTENTION HEAD:

H1 (W1
k, W1 W1)

v, q

THE ATTENTION
MECHANISM• Multi-Head Attention

h1 h2 h3

O1 O2 O3

MULTIPLE ATTENTION HEADS

WITH LEARNABLE PARAMETERS!!

H4

H3

H2

H1

H1 (W1
k, W1 W1)

v, q

MULTI-HEAD ATTENTION

THE ATTENTION
MECHANISM• Multi-Head Attention

O1 O2 O3

FEED FORWARD

ENCODER BLOCK

w1 w2 w3

h1 h2 h3

O
1
(w

1, w
2, w

3
) O

2
(w

1, w
2, w

3
) O

3
(w

1, w
2, w

3
)

ATTENTION IS ALL YOU NEED!
MULTI-HEAD ATTENTION

BLOCK

h
3
(w

3
)h

2
(w

2
)h

1
(w

1
)

THE TRANSFORMER
ARCHITECTURE

THE TRANSFORMER ARCHITECTURE

O1 O2 O3

FEED FORWARD

ENCODER BLOCK

h1 h2 h3

O
1
(w

1, w
2, w

3
) O

2
(w

1, w
2, w

3
) O

3
(w

1, w
2, w

3
)

MULTI-HEAD ATTENTION

BLOCK

w1 w2 w3

h
3
(w

3
)h

2
(w

2
)h

1
(w

1
)

THE TRANSFORMER ARCHITECTURE

O1 O2 O3

FEED FORWARD

MULTI-HEAD ATTENTION

BLOCK

ENCODER BLOCK

w1 w2 w3

THE TRANSFORMER ARCHITECTURE
t1

O1 O2 O3

ENCODER BLOCK

FEED FORWARD

MULTI-HEAD ATTENTION

BLOCK

FEED FORWARD

MULTI-HEAD ATTENTION

BLOCK

w1 w2 w3

DECODER BLOCK

THE TRANSFORMER ARCHITECTURE
t1

O1 O2 O3

ENCODER BLOCK

FEED FORWARD

MULTI-HEAD ATTENTION

BLOCK

FEED FORWARD

MULTI-HEAD ATTENTION

BLOCK

DECODER BLOCK

MASKED MULTI-HEAD

ATTENTION BLOCK

w1 w2 w3

t1

THE TRANSFORMER ARCHITECTURE
t1

O1 O2 O3

ENCODER BLOCK

FEED FORWARD

MULTI-HEAD ATTENTION

BLOCK

FEED FORWARD

MULTI-HEAD ATTENTION

BLOCK

DECODER BLOCK

MASKED MULTI-HEAD

ATTENTION BLOCK

t2

w1 w2 w3

t1

THE TRANSFORMER ARCHITECTURE
t1

O1 O2 O3

ENCODER BLOCK

FEED FORWARD

MULTI-HEAD ATTENTION

BLOCK

FEED FORWARD

MULTI-HEAD ATTENTION

BLOCK

DECODER BLOCK

MASKED MULTI-HEAD

ATTENTION BLOCK

t2

w1 w2 w3

t1 t2

THE TRANSFORMER ARCHITECTURE
t1

O1 O2 O3

ENCODER BLOCK

FEED FORWARD

MULTI-HEAD ATTENTION

BLOCK

FEED FORWARD

MULTI-HEAD ATTENTION

BLOCK

DECODER BLOCK

MASKED MULTI-HEAD

ATTENTION BLOCK

t2 t3

w1 w2 w3

t1 t2

THE TRANSFORMER ARCHITECTURE

THE TRANSFORMER ARCHITECTURE

Multiple stacked encoder and decoder

blocks!

THE TRANSFORMER ARCHITECTURE

Multiple stacked encoder and decoder blocks!

Layer Normalization!

THE TRANSFORMER ARCHITECTURE

Multiple stacked encoder and decoder blocks!

Layer Normalization!

Positional Embeddings!

GPT ARCHITECTURE

GPT ARCHITECTURE

BERT ARCHITECTURE

BERT ARCHITECTURE

	_WP12_Decair Aljaafreh AI presentation
	AI, Deep Learning Fundamentals and Applications
	OUTLINE
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	History
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Introduction
	Motivations for Deep Architectures�
	Why Now ?�
	Until Now…�
	Deep Learning = Learning Hierarchical Representations�
	Deep Learning = Learning Hierarchical Representations�
	 �
	 �
	 �
	Applications of Deep Learning
	Slide 26
	Automatic Colorization of Black and White Images
	Automatically Adding Sounds To Silent Movies
	Automatic Machine Translation
	Object Classification and Detection in Photographs
	Slide 31
	Automatic Handwriting Generation
	Automatic Text Generation
	Automatic Image Caption Generation
	Slide 35
	Neural Networks:
	 Neural networks have taken over AI
	So what are neural networks??
	The human perspective
	Recap : NNets and the brain
	Recap : The brain
	Recap : Nnets and the brain
	Recap: the perceptron
	A better figure
	The “soft” perceptron (logistic)
	Other “activations”
	The multi-layer perceptron
	Defining “depth”
	Deep Structures
	The multi-layer perceptron
	MLPs approximate functions
	Today
	he reals
	More complex decision boundaries
	Complex decision boundaries
	Complex decision boundaries
	Complex decision boundaries
	Exercise: compose this with one hidden layer
	Depth and the universal classifier
	Deep Neural Networks
Scanning for patterns (aka convolutional networks)
	The model so far
	A new problem
	Finding a Welcome
	Finding a Welcome
	Finding a Welcome
	Flowers
	A problem
	A problem
	The need for shift invariance
	Solution: Scan
	Solution: Scan
	Solution: Scan
	Solution: Scan
	Solution: Scan
	Solution: Scan
	Solution: Scan
	Solution: Scan
	Solution: Scan
	Solution: Scan
	Its actually just one giant network
	The 2-d analogue: Does this picture
	Solution: Scan
	Solution: Scan
	Solution: Scan
	Solution: Scan
	Solution: Scan
	Solution: Scan
	Solution: Scan
	Solution: Scan
	Solution: Scan
	Solution: Scan
	Solution: Scan
	Solution: Scan
	Solution: Scan
	Solution: Scan
	Scanning the picture to find a flower
	Scanning the picture to find a flower
	Its just a giant network with common subnets
	Scanning: A closer look
	Scanning: A closer look
	Scanning: A closer look
	Scanning: A closer look
	Scanning: A closer look
	Scanning: A closer look
	Scanning: A closer look
	Scanning: A closer look
	Scanning: A closer look
	Scanning: A closer look
	Scanning: A closer look
	Scanning: A closer look
	Scanning: A closer look
	Scanning: A closer look
	Scanning: A closer look
	Scanning: A closer look
	Scanning: A closer look
	Scanning: A closer look
	Scanning: A closer look
	Scanning: A closer look
	Scanning: A closer look
	Scanning: A closer look
	Scanning: A closer look
	Scanning: A closer look
	Scanning: A closer look
	Scanning: A closer look
	Scanning: A closer look
	Scanning: A closer look
	Scanning: A closer look
	Scanning: A closer look
	Scanning: A closer look
	Scanning: A closer look
	Detecting a picture anywhere in the image?
	Detecting a picture anywhere in the image?
	Detecting a picture anywhere in the image?
	Detecting a picture anywhere in the image?
	Detecting a picture in the image
	The behavior of the layers
	Distributing the scan
	Distributing the scan
	Distributing the scan
	Distributing the scan
	Distributing the scan
	Distributing the scan
	Distributing the scan
	Distributing the scan
	Distributing the scan
	Distributing the scan
	Distributing the scan
	Distributing the scan
	Distributing the scan
	This is still just scanning with a shared parameter network
	This is still just scanning with a shared parameter network
	A different view
	The “cube” view of input maps
	The “cube” view of input maps
	The “cube” view of input maps
	The “cube” view of input maps
	The “cube” view of input maps
	The “cube” view of input maps
	The “cube” view of input maps
	The “cube” view of input maps
	The other component Downsampling/Pooling
	Max pooling
	Recall: Max pooling
	Recall: Max pooling
	Recall: Max pooling
	Recall: Max pooling
	Recall: Max pooling
	Downsampling requires Stride>1
	Downsampling requires Stride>1
	Downsampling requires Stride>1
	Downsampling requires Stride>1
	Downsampling requires Stride>1
	Downsampling requires Stride>1
	Downsampling requires Stride>1
	Downsampling requires Stride>1
	Downsampling requires Stride>1
	Slide 177
	What did I say?
	What is he talking about?
“Football” or “basketball”?
	Should I invest..
To invest or not to invest?
	These are classification and prediction problems
	Representational shortcut
	Representational shortcut
	Representational shortcut
	The stock prediction problem…
To invest or not to invest?
	The stock predictor network
	The stock predictor network
	The stock predictor network
	The stock predictor network
	The stock predictor network
	Finite-response model
	The stock predictor
	The stock predictor
	The stock predictor
	The stock predictor
	The stock predictor
	The stock predictor
	Finite-response model
	Finite-response
	Systems often have long-term dependencies
	We want infinite memory
	A one-tap NARX network
	A one-tap NARX network
	A one-tap NARX network
	A one-tap NARX network
	A one-tap NARX network
	A one-tap NARX network
	A one-tap NARX network
	A more complete representation
	Same figure redrawn
	A more generic NARX network
	A “complete” NARX network
	The simple state-space model
	An alternate model for infinite response systems: the state-space model
	Single hidden layer RNN
	Multiple recurrent layer RNN
	Multiple recurrent layer RNN
	A more complex state
	Or the network may be even more complicated
	Generalization with other recurrences
	The simplest structures are most popular
	A Recurrent Neural Network
	The detailed version of the simplified representation
	Multiple recurrent layer RNN
	Multiple recurrent layer RNN
	Equations
	Equations
	Variants on recurrent nets
	Variants
	Deep Learning
Sequence to Sequence models: Attention Models
	Sequence-to-sequence modelling
	Sequence to sequence
	Recap: Predicting text
	Language modelling using RNNs
	Simple recurrence : Text Modelling
	Generating Language: The model
	Modelling the problem
	Modelling the problem
	Modelling the problem
	Modelling the problem
	Modelling the problem
	The “simple” translation model
	The “simple” translation model
	The “simple” translation model
	The “simple” translation model
	The “simple” translation model
	The “simple” translation model
	The “simple” translation model
	Slide 249
	The “simple” translation model
	The “simple” translation model
	What the network actually produces
	What the network actually produces
Ich
	What the network actually produces
Ich
	What the network actually produces
Ich
	What the network actually produces
Ich	habe
	What the network actually produces
Ich	habe
	What the network actually produces
Ich	habe
	What the network actually produces
Ich	habe	einen
	What the network actually produces
Ich	habe	einen apfel	gegessen <eos>
	Generating an output from the net
	The probability of the output
	The probability of the output
	Greedy drawing
	Generating Image Captions
	Generating Image Captions
	Generating Image Captions
	Generating Image Captions
	Generating Image Captions
	Generating Image Captions
	Generating Image Captions
	Generating Image Captions
	Examples from Vinyals et al.
	Variants
Ich	habe	einen apfel gegessen <eos>
	A problem with this framework
	A problem with this framework
	Using all input hidden states
Ich	habe einen	apfel	gegessen <eos>
	Using all input hidden states
Ich	habe einen	apfel	gegessen <eos>
	Using all input hidden states
	Using all input hidden states
	Using all input hidden states
	Using all input hidden states
	Using all input hidden states
	Using all input hidden states
	Using all input hidden states
	Using all input hidden states
	Attention Models
	Attention weights at time
	Requirement on attention weights
	Requirement on attention weights
	Using all input hidden states
	Using all input hidden states
	Using all input hidden states
	Using all input hidden states
	Using all input hidden states
	Summarizing the computation
Ich	habe einen
	Attention models
Ich	habe einen
	Converting an input (forward pass)
	Converting an input (forward pass)
	Converting an input (forward pass)
	Converting an input (forward pass)
	Converting an input (forward pass)
	Converting an input (forward pass)
	Slide 304
	Slide 305
	Slide 306
	Slide 307
	habe
	habe
	Slide 310
	habe
	habe
	habe
	Slide 314
	habe
	Modification: Query key value
	TRANSFORMERS
	CONTENT
	INTRODUCTION TO TRANSFORMERS
	INTRODUCTION TO TRANSFORMERS
	INTRODUCTION TO TRANSFORMERS
	INTRODUCTION TO TRANSFORMERS
	INTRODUCTION TO TRANSFORMERS
	TRANSFORMERS : BACKGROUND
	TRANSFORMERS : BACKGROUND
	TRANSFORMERS : BACKGROUND
	TRANSFORMERS : BACKGROUND
	TRANSFORMERS : BACKGROUND
	TRANSFORMERS : BACKGROUND
	TRANSFORMERS : BACKGROUND
	TRANSFORMERS : BACKGROUND
	TRANSFORMERS : BACKGROUND
	TRANSFORMERS : BACKGROUND
	TRANSFORMERS : BACKGROUND
	TRANSFORMERS : BACKGROUND
	TRANSFORMERS : BACKGROUND
	TRANSFORMERS : BACKGROUND
	TRANSFORMERS : BACKGROUND
	TRANSFORMERS : BACKGROUND
	TRANSFORMERS : BACKGROUND
	TRANSFORMERS :
THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE ATTENTION MECHANISM
	THE TRANSFORMER ARCHITECTURE
	THE TRANSFORMER ARCHITECTURE
	THE TRANSFORMER ARCHITECTURE
	THE TRANSFORMER ARCHITECTURE
	THE TRANSFORMER ARCHITECTURE
	THE TRANSFORMER ARCHITECTURE
	THE TRANSFORMER ARCHITECTURE
	THE TRANSFORMER ARCHITECTURE
	THE TRANSFORMER ARCHITECTURE
	THE TRANSFORMER ARCHITECTURE
	THE TRANSFORMER ARCHITECTURE
	THE TRANSFORMER ARCHITECTURE
	GPT ARCHITECTURE
	GPT ARCHITECTURE
	BERT ARCHITECTURE
	BERT ARCHITECTURE

